There are increasing demands for the Internet of Things (IoT), wearable electronics, and medical implants. Wearable devices provide various important daily applications by monitoring real-life human activities. They demand low-cost autonomous operation in a miniaturized form factor, which is challenging to realize using a rechargeable battery. One promising energy source is thermoelectric generators (TEGs), considered the only way to generate a small amount of electric power for the autonomous operation of wearable devices. In this work, we propose a compact and efficient converter system for energy harvesting from TEGs. The system consists of an 83.7% efficient boost converter and a 90 mV self-startup, sharing a single inductor. Innovated techniques are applied to adaptive maximum power point tracking (A-MPPT) and indirect zero current switching (I-ZCS) controllers for efficient operation. The startup circuit is realized using a gain-boosted tri-state buffer, which achieves 69.8% improved gain at the input = 200 mV compared to the conventional approach. To extract the maximum power, we use an A-MPPT controller based on a simple capacitive divider, achieving 95.2% tracking efficiency. To address the challenge of realizing accurate voltage or current sensors, we propose an I-ZCS controller based on a new concept of maximum output voltage tracking (MOVT). The integrated circuit (IC) is fabricated using a 28 nm CMOS in a compact chip area of 0.03 mm. The compact size, which has not been obtained with previous designs, is suitable for wearable device applications. Measured results show successful startup operation at an ultralow input, = 90 mV. A peak conversion efficiency of 85.9% is achieved for the output of 1.07 mW.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347048 | PMC |
http://dx.doi.org/10.3390/s23136243 | DOI Listing |
ChemSusChem
January 2025
North China Electric Power University, Changping district, NO.2, Beinong Road, CHINA.
Semitransparent perovskite solar cells (ST-PSCs) for building-integrated photovoltaics (BIPV) face the challenge of achieving high efficiency due to significant light loss. The SnO2 electron transport layer (ETL), utilized in n-i-p PSCs and prepared via the sol-gel method, is susceptible to aggregation on substrate, resulting in light scattering that diminishes absorption of the perovskite layer. In this study, we propose a strategy that combines atomic layer deposition (ALD) and sol-gel solution to deposit a bilayer SnO2 structure to address these issues.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Computer Engineering, Modeling, Electronics, and Systems Engineering, University of Calabria, 87036 Rende, Italy.
This paper presents Cryo-SIMPLY, a reliable smart material implication (SIMPLY) operating at cryogenic conditions (77 K). The assessment considers SIMPLY schemes based on spin-transfer torque magnetic random access memory (STT-MRAM) technology with single-barrier magnetic tunnel junction (SMTJ) and double-barrier magnetic tunnel junction (DMTJ). Our study relies on a temperature-aware macrospin-based Verilog-A compact model for MTJ devices and a 65 nm commercial process design kit (PDK) calibrated down to 77 K under silicon measurements.
View Article and Find Full Text PDFNat Comput Sci
January 2025
Key Lab of Fabrication Technologies for Integrated Circuits and Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, China.
The human brain is a complex spiking neural network (SNN) capable of learning multimodal signals in a zero-shot manner by generalizing existing knowledge. Remarkably, it maintains minimal power consumption through event-based signal propagation. However, replicating the human brain in neuromorphic hardware presents both hardware and software challenges.
View Article and Find Full Text PDFNat Commun
January 2025
International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China.
The anomalous photovoltaic effect (APE) in polar crystals is a promising avenue for overcoming the energy conversion efficiency limits of conventional photoelectric devices utilizing p-n junction architectures. To facilitate effective photocarrier separation and enhance the APE, polar materials need to be thinned down to maximize the depolarization field. Here, we demonstrate Janus MoSSe monolayers (~0.
View Article and Find Full Text PDFJ Breath Res
January 2025
Dental public health, Institute of Science Tokyo Graduate School of Medical and Dental Sciences, 1-5-45 yushima, bunnkyo-ku, Bunkyo-ku, Tokyo, 113-8510, JAPAN.
Halitosis presents a significant global health concern, necessitating the development of precise and efficient testing methodologies owing to the high prevalence and the associated social and psychological effects. The measurement of volatile sulfur compounds (VSCs), recognized as primary contributors to halitosis, is particularly significant. While gas chromatography (GC-MS) offers accurate measurements, its bulky and expensive nature limits widespread accessibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!