The translation of the base of support represents a promising approach for the objective assessment of dynamic balance control. Therefore, this study aimed to present a servo-controlled, electrically driven movable plate and a new set of parameters based on the center-of-pressure (CoP) trajectory. Twenty subjects were assessed on a force platform screwed over a movable plate that could combine the following settings: direction (forward (FW) and backward (BW)), displacement (25 mm, 50 mm, and 100 mm), and ramp rate (100 mm/s and 200 mm/s). The subjects underwent two sets of 12 trials randomly combining the plate settings. From the CoP trajectory of the 2.5 s time window after the perturbation, the 95% confidence-interval ellipse (Area95) and the CoP mean velocity (Unit Path) were calculated. Within the same time window, the first peak (FP), the maximal oscillations (ΔCoPMax), and the standard deviation (PPV) of the CoP anterior-posterior trajectory were calculated. The plate direction ( < 0.01), ramp rate ( < 0.001), and displacement ( < 0.01) affected the Area95, FP, and ΔCoPMax, while the Unit Path and PPV were influenced only by the ramp rate ( < 0.001) and displacement ( < 0.001). The servo-controlled, electrically driven movable plate and the CoP-related parameters presented in this study represent a new promising objective tool for dynamic balance assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347143PMC
http://dx.doi.org/10.3390/s23136203DOI Listing

Publication Analysis

Top Keywords

dynamic balance
12
movable plate
12
ramp rate
12
base support
8
objective tool
8
tool dynamic
8
balance assessment
8
servo-controlled electrically
8
electrically driven
8
driven movable
8

Similar Publications

Background: Developing interventions along with the population of interest using systems thinking is a promising method to address the underlying system dynamics of overweight. The purpose of this study is twofold: to gain insight into the perspectives of adolescents regarding: (1) the system dynamics of energy balance-related behaviours (EBRBs) (physical activity, screen use, sleep behaviour and dietary behaviour); and (2) underlying mechanisms and overarching drivers of unhealthy EBRBs.

Methods: We conducted Participatory Action Research (PAR) to map the system dynamics of EBRBs together with adolescents aged 10-14 years old living in a lower socioeconomic, ethnically diverse neighbourhood in Amsterdam East, the Netherlands.

View Article and Find Full Text PDF

Microbiota and immune dynamics in rheumatoid arthritis: Mechanisms and therapeutic potential.

Best Pract Res Clin Rheumatol

January 2025

Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Division of Rheumatology, Department of Medicine, University of Colorado, No. 11, Xizhimen South Street, Xicheng District, Aurora, CO, 80045, USA. Electronic address:

Rheumatoid arthritis (RA) is a complex autoimmune disease with growing evidence implicating the microbiota as a critical contributor to its pathogenesis. This review explores the multifaceted roles of microbial dysbiosis in RA, emphasizing its impact on immune cell modulation, autoantibody production, gut barrier integrity, and joint inflammation. Animal models reveal how genetic predisposition and environmental factors interact with specific microbial taxa to influence disease susceptibility.

View Article and Find Full Text PDF

Coastal ecosystems are degraded worldwide and oyster reefs are among the most threatened coastal habitats. Oysters are a critical ecosystem engineer and valuable fishery species, thus effective management strategies must balance tradeoffs between protecting reef ecosystems and continued human use. Management practices for oysters commonly incorporate shell replenishment (provisioning hard substrates to increase reef relief) and spatial management (rotational harvest areas or sanctuaries); however, the impact of these practices on reef dynamics and fisheries outcomes are poorly understood, particularly on harvested reefs.

View Article and Find Full Text PDF

Emerging roles for tubulin PTMs in neuronal function and neurodegenerative disease.

Curr Opin Neurobiol

January 2025

Department of Pathology & Cell Biology, Columbia University Irving Medical Center, 10032, New York, NY, USA. Electronic address:

Neurons are equipped with microtubules of different stability with stable and dynamic domains often coexisting on the same microtubule. While dynamic microtubules undergo random transitions between disassembly and assembly, stable ones persist long enough to serve as platforms for tubulin-modifying enzymes (known as writers) that attach molecular components to the α- or β-tubulin subunits. The combination of these posttranslational modifications (PTMs) results in a "tubulin code," dictating the behavior of selected proteins (known as readers), some of which were shown to be crucial for neuronal function.

View Article and Find Full Text PDF

Land use changes profoundly affect hydrological processes and water quality at various scales, necessitating a comprehensive understanding of sustainable water resource management. This paper investigates the implications of land use alterations in the Gap-Cheon watershed, analyzing data from 2012 and 2022 and predicting changes up to 2052 using the Future Land Use Simulation (FLUS) model. The study employs the Hydrological Simulation Program-FORTRAN (HSPF) model to assess water quantity and quality dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!