This paper proposes a method for accurate 3D posture sensing of the soft actuators, which could be applied to the closed-loop control of soft robots. To achieve this, the method employs an array of miniaturized sponge resistive materials along the soft actuator, which uses long short-term memory (LSTM) neural networks to solve the end-to-end 3D posture for the soft actuators. The method takes into account the hysteresis of the soft robot and non-linear sensing signals from the flexible bending sensors. The proposed approach uses a flexible bending sensor made from a thin layer of conductive sponge material designed for posture sensing. The LSTM network is used to model the posture of the soft actuator. The effectiveness of the method has been demonstrated on a finger-size 3 degree of freedom (DOF) pneumatic bellow-shaped actuator, with nine flexible sponge resistive sensors placed on the soft actuator's outer surface. The sensor-characterizing results show that the maximum bending torque of the sensor installed on the actuator is 4.7 Nm, which has an insignificant impact on the actuator motion based on the working space test of the actuator. Moreover, the sensors exhibit a relatively low error rate in predicting the actuator tip position, with error percentages of 0.37%, 2.38%, and 1.58% along the x-, y-, and z-axes, respectively. This work is expected to contribute to the advancement of soft robot dynamic posture perception by using thin sponge sensors and LSTM or other machine learning methods for control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347248PMC
http://dx.doi.org/10.3390/s23136189DOI Listing

Publication Analysis

Top Keywords

soft actuators
12
soft
9
dynamic posture
8
posture perception
8
posture sensing
8
sponge resistive
8
soft actuator
8
posture soft
8
soft robot
8
flexible bending
8

Similar Publications

Soft, Modular Power for Composing Robots with Embodied Energy.

Adv Mater

January 2025

Department of Mechanical and Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY, 14850, USA.

The adaptable, modular structure of muscles, combined with their confluent energy storage allows for numerous architectures found in nature: trunks, tongues, and tentacles to name some more complex ones. To provide an artificial analog to this biological soft muscle, a self-powered, soft hydrostat actuator is presented. As an example of how to use these modules, a worm robot is assembled where the near totality of the body stores electrochemical potential.

View Article and Find Full Text PDF

Amphibious Soft Robots Based on Programmable Actuators Fabricated by Brushing Chinese Ink on Paper.

Small

January 2025

Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China.

Soft robots based on actuators that can work in both on-ground and on-water situations are environmentally adaptable and can accomplish tasks in complex environments. However, most current amphibious actuators need external stimuli to move on water and require complex preparation processes. Herein, amphibious Ink-paper/polyethylene programmable actuators and robots are proposed, which are fabricated by rapidly brushing Chinese ink on paper.

View Article and Find Full Text PDF

The specific ion effect (SIE), the control of polymer solubility in aqueous solutions by the added ions, has been a phenomenon known for more than a century. The seemingly simple nature of the ion-polymer-water interactions can lead to complex behaviors, which have also been exploited in many applications in biochemistry, electrochemistry, and energy harvesting. Here, we show an emerging diversification of actuation behaviors in "salty" hydrogel and hydrogel-paper actuators.

View Article and Find Full Text PDF

Liquid crystal elastomers (LCEs) with various deformation properties based on phase transition were widely used as actuators and provided potential to fabricate functional surfaces with tunable microstructure. Herein, we demonstrate a strategy to fabricate dynamic micro wrinkles on LCE surfaces based on LC phase transition. Stable micron-sized surface wrinkles on the anthracene-containing LCE film (AnLCE) are fabricated by ultraviolet exposure induced gradient cross-linking and subsequently stretching-releasing (UV-SR).

View Article and Find Full Text PDF

A liquid crystal elastomer (LCE) actuator capable of colorimetric humidity sensing is realized. The designed LCE features acid protonated amino azobenzene side groups in its structure, which endow the actuator with the hygroscopicity and act as the humidity reporter via color changes. Given that the protonated and deprotonated chromophore absorb visible light at different wavelengths, when the protonated LCE is under higher humidity, it absorbs more water that deprotonates azobenzene and leads to a change in color.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!