Localizing leakages in large water distribution systems is an important and ever-present problem. Due to the complexity originating from water pipeline networks, too few sensors, and noisy measurements, this is a highly challenging problem to solve. In this work, we present a methodology based on generative deep learning and Bayesian inference for leak localization with uncertainty quantification. A generative model, utilizing deep neural networks, serves as a probabilistic surrogate model that replaces the full equations, while at the same time also incorporating the uncertainty inherent in such models. By embedding this surrogate model into a Bayesian inference scheme, leaks are located by combining sensor observations with a model output approximating the true posterior distribution for possible leak locations. We show that our methodology enables producing fast, accurate, and trustworthy results. It showed a convincing performance on three problems with increasing complexity. For a simple test case, the Hanoi network, the average topological distance (ATD) between the predicted and true leak location ranged from 0.3 to 3 with a varying number of sensors and level of measurement noise. For two more complex test cases, the ATD ranged from 0.75 to 4 and from 1.5 to 10, respectively. Furthermore, accuracies upwards of 83%, 72%, and 42% were achieved for the three test cases, respectively. The computation times ranged from 0.1 to 13 s, depending on the size of the neural network employed. This work serves as an example of a digital twin for a sophisticated application of advanced mathematical and deep learning techniques in the area of leak detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346374 | PMC |
http://dx.doi.org/10.3390/s23136179 | DOI Listing |
Biomed Phys Eng Express
January 2025
Chiba University Center for Frontier Medical Engineering, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, JAPAN.
Traumatic injury remains a leading cause of death worldwide, with traumatic bleeding being one of its most critical and fatal consequences. The use of whole-body computed tomography (WBCT) in trauma management has rapidly expanded. However, interpreting WBCT images within the limited time available before treatment is particularly challenging for acute care physicians.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
In human activity-recognition scenarios, including head and entire body pose and orientations, recognizing the pose and direction of a pedestrian is considered a complex problem. A person may be traveling in one sideway while focusing his attention on another side. It is occasionally desirable to analyze such orientation estimates using computer-vision tools for automated analysis of pedestrian behavior and intention.
View Article and Find Full Text PDFHypertension is a critical risk factor and cause of mortality in cardiovascular diseases, and it remains a global public health issue. Therefore, understanding its mechanisms is essential for treating and preventing hypertension. Gene expression data is an important source for obtaining hypertension biomarkers.
View Article and Find Full Text PDFPLoS One
January 2025
Engineering Research Center of Hydrogen Energy Equipment& Safety Detection, Universities of Shaanxi Province, Xijing University, Xi'an, China.
The traditional method of corn quality detection relies heavily on the subjective judgment of inspectors and suffers from a high error rate. To address these issues, this study employs the Swin Transformer as an enhanced base model, integrating machine vision and deep learning techniques for corn quality assessment. Initially, images of high-quality, moldy, and broken corn were collected.
View Article and Find Full Text PDFBioinformatics
January 2025
Department of Biology, Emory University, Atlanta, GA 30322, United States.
Motivation: In silico functional annotation of proteins is crucial to narrowing the sequencing-accelerated gap in our understanding of protein activities. Numerous function annotation methods exist, and their ranks have been growing, particularly so with the recent deep learning-based developments. However, it is unclear if these tools are truly predictive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!