Nowadays, Convolution Neural Network (CNN) based deep learning methods are widely used in detecting and classifying fruits from faults, color and size characteristics. In this study, two different neural network model estimators are employed to detect apples using the Single-Shot Multibox Detection (SSD) Mobilenet and Faster Region-CNN (Faster R-CNN) model architectures, with the custom dataset generated from the red apple species. Each neural network model is trained with created dataset using 4000 apple images. With the trained model, apples are detected and counted autonomously using the developed Flying Robotic System (FRS) in a commercially produced apple orchard. In this way, it is aimed that producers make accurate yield forecasts before commercial agreements. In this paper, SSD-Mobilenet and Faster R-CNN architecture models trained with COCO datasets referenced in many studies, and SSD-Mobilenet and Faster R-CNN models trained with a learning rate ranging from 0.015-0.04 using the custom dataset are compared experimentally in terms of performance. In the experiments implemented, it is observed that the accuracy rates of the proposed models increased to the level of 93%. Consequently, it has been observed that the Faster R-CNN model, which is developed, makes extremely successful determinations by lowering the loss value below 0.1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346156 | PMC |
http://dx.doi.org/10.3390/s23136171 | DOI Listing |
Sci Rep
January 2025
College of Mathematics and Computer Science, Guangdong Ocean University, Zhanjiang, 524088, China.
To address the problems of complex cloud features in satellite cloud maps, inaccurate typhoon localization, and poor target detection accuracy, this paper proposes a new typhoon localization algorithm, named TGE-YOLO. It is based on the YOLOv8n model with excellent high-low feature fusion capability and innovatively achieves the organic combination of feature fusion, computational efficiency, and localization accuracy. Firstly, the TFAM_Concat module is creatively designed in the neck network, which comprehensively utilizes the detailed information of shallow features and the semantic information of deeper features, enhancing the fusion ability of features at each layer.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China.
To address the problems that exist in the target detection of vehicle-mounted visual sensors in foggy environments, a vehicle target detection method based on an improved YOLOX network is proposed. Firstly, to address the issue of vehicle target feature loss in foggy traffic scene images, specific characteristics of fog-affected imagery are integrated into the network training process. This not only augments the training data but also improves the robustness of the network in foggy environments.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Coal Engineering, Shanxi Datong University, Datong 037000, China.
In the complex environment of fully mechanized mining faces, the current object detection algorithms face significant challenges in achieving optimal accuracy and real-time detection of mine personnel and safety helmets. This difficulty arises from factors such as uneven lighting conditions and equipment obstructions, which often lead to missed detections. Consequently, these limitations pose a considerable challenge to effective mine safety management.
View Article and Find Full Text PDFSci Rep
January 2025
School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
InSAR monitoring technology is widely used in investigating landslide hazards. Leveraging object detection algorithms to quickly extract landslide information from Wide-Area InSAR measurements is of great significance. Our InSAR-YOLOv8, an algorithm that automatically detects landslides from InSAR measurements, addresses the low accuracy and suboptimal detection performance of existing network models.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Automation Department, North China Electric Power University, Baoding 071003, China.
Aiming at the severe occlusion problem and the tiny-scale object problem in the multi-fitting detection task, the Scene Knowledge Integrating Network (SKIN), including the scene filter module (SFM) and scene structure information module (SSIM) is proposed. Firstly, the particularity of the scene in the multi-fitting detection task is analyzed. Hence, the aggregation of the fittings is defined as the scene according to the professional knowledge of the power field and the habit of the operators in identifying the fittings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!