A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Heart Rate Estimation from Facial Image Sequences of a Dual-Modality RGB-NIR Camera. | LitMetric

Heart Rate Estimation from Facial Image Sequences of a Dual-Modality RGB-NIR Camera.

Sensors (Basel)

Department of Electrical Engineering, Center for Innovative Research on Aging Society (CIRAS), and Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chia-Yi 621, Taiwan.

Published: July 2023

This paper presents an RGB-NIR (Near Infrared) dual-modality technique to analyze the remote photoplethysmogram (rPPG) signal and hence estimate the heart rate (in beats per minute), from a facial image sequence. Our main innovative contribution is the introduction of several denoising techniques such as Modified Amplitude Selective Filtering (MASF), Wavelet Decomposition (WD), and Robust Principal Component Analysis (RPCA), which take advantage of RGB and NIR band characteristics to uncover the rPPG signals effectively through this Independent Component Analysis (ICA)-based algorithm. Two datasets, of which one is the public PURE dataset and the other is the CCUHR dataset built with a popular Intel RealSense D435 RGB-D camera, are adopted in our experiments. Facial video sequences in the two datasets are diverse in nature with normal brightness, under-illumination (i.e., dark), and facial motion. Experimental results show that the proposed method has reached competitive accuracies among the state-of-the-art methods even at a shorter video length. For example, our method achieves MAE = 4.45 bpm (beats per minute) and RMSE = 6.18 bpm for RGB-NIR videos of 10 and 20 s in the CCUHR dataset and MAE = 3.24 bpm and RMSE = 4.1 bpm for RGB videos of 60-s in the PURE dataset. Our system has the advantages of accessible and affordable hardware, simple and fast computations, and wide realistic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346879PMC
http://dx.doi.org/10.3390/s23136079DOI Listing

Publication Analysis

Top Keywords

heart rate
8
facial image
8
beats minute
8
component analysis
8
pure dataset
8
ccuhr dataset
8
rate estimation
4
facial
4
estimation facial
4
image sequences
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!