This paper investigates the effect of decorating graphene with zinc oxide (ZnO) nanoparticles (NPs) for the detection of NO. In this regard, two graphene sensors with different ZnO loadings of 5 wt.% and 20 wt.% were prepared, and their responses towards NO at room temperature and different conditions were compared. The experimental results demonstrate that the graphene loaded with 5 wt.% ZnO NPs (G95/5) shows better performance at detecting low concentrations of the target gas than the one loaded with 20 wt.% ZnO NPs (G80/20). Moreover, measurements under dry and humid conditions of the G95/5 sensor revealed that the material is very sensitive to ambient moisture, showing an almost eight-fold increase in NO sensitivity when the background changes from dry to 70% relative humidity. Regarding sensor selectivity, it presents a significant selectivity towards NO compared to other gas compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346611 | PMC |
http://dx.doi.org/10.3390/s23136055 | DOI Listing |
ACS Nano
January 2025
Graduate Institute of Ferrous & Eco Materials Technology (GIFT), Pohang University of Science and Technology University, Pohang 37666, Republic of Korea.
Lattice volume changes in Li-ion batteries active materials are unavoidable during electrochemical cycling, posing significant engineering challenges from the particle to the electrode level. In this study, we present an elastic framework coating designed to absorb and reversibly release strain energy associated with particle volume changes, thereby enhancing mechanical resilience at both the particle and electrode levels. This framework, composed of multiwalled carbon nanotubes (MWCNTs), is applied to nickel-rich LiNiCoMnO (NCM9055) cathodes at a low loading of 0.
View Article and Find Full Text PDFSci Rep
January 2025
Process and Energy Department, University of Technology of Delft, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands.
An urgent ecological issue is the threat posed by invasive species, which are becoming more widespread especially in Africa. These encroachments damage ecosystems, pose a threat to biodiversity, and outcompete local plants and animals. This article focuses on converting Acacia Mellifera from Namibia, commonly known as encroacher bush (EB) into high-quality drop-in intermediates for the chemical and transport industry via hydrothermal liquefaction (HTL).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bharu, Malaysia.
As the demand for sustainable energy sources intensifies, biodiesel emerges as a compelling renewable alternative to petroleum-based fuels. Leveraging waste cooking oil (WCO) as a feedstock not only offers an environmentally friendly fuel source but also addresses waste disposal issues. However, biodiesel production from WCO faces challenges, particularly due to its high free fatty acid (FFA) content, which can hinder efficient conversion and lead to soap formation in traditional alkaline-catalysed processes.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
High-performance gas separation membranes have potential in industrial separation applications, while overcoming the permeability-selectivity trade-off via regulable aperture distribution remains challenging. Here, we report a strategy to fabricate Polyolefin Reweaved Ultra-micropore Membrane (PRUM) to acquire regulable microporous channel. Specifically, olefin monomers are dispersed uniformly into a pristine membrane (e.
View Article and Find Full Text PDFJ Virol
December 2024
Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA.
Protein kinase R (PKR) is an interferon-induced antiviral protein activated by autophosphorylation in response to double strand DNA (dsRNA) and other stimuli. Activated PKR causes translation inhibition and apoptosis, and it contributes to proinflammatory responses, cell growth, and differentiation. Mouse adenovirus type 1 (MAV-1) counteracts PKR by causing its degradation via a viral protein, early region 4 open reading frame 6 (E4orf6).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!