Albumin assays in serum are important for the prognostic assessment of many life-threatening diseases, such as heart failure, liver disease, malnutrition, inflammatory bowel disease, infections, and kidney disease. In this study, synthetic coelenterazine (CTZ) indicators are developed to quantitatively illuminate human and bovine serum albumins (HSA and BSA) with high specificity. Their functional groups were chemically modified to specifically emit luminescence with HSA and BSA. The CTZ indicators were characterized by assaying the most abundant serum proteins and found that the CTZ indicators S6 and S6h were highly specific to HSA and BSA, respectively. Their colors were dramatically converted from blue, peaked at 480 nm, to yellowish green, peaked at 535 nm, according to the HSA-BSA mixing ratios, wherein the origins and mixing levels of the albumins can be easily determined by their colors and peak positions. The kinetic properties of HSA and BSA were investigated in detail, confirming that the serum albumins catalyze the CTZ indicators, which act as pseudo-luciferases. The catalytic reactions were efficiently inhibited by specific inhibitors, blocking the drug-binding sites I and II of HSA and BSA. Finally, the utility of the CTZ indicators was demonstrated through a quantitative imaging of the real fetal bovine serum (FBS). This study is the first example to show that the CTZ indicators specify HSA and BSA with different colors. This study contributes to the expansion of the toolbox of optical indicators, which efficiently assays serum proteins in physiological samples. Considering that these CTZ indicators immediately report quantitative optical signals with high specificity, they provide solutions to conventional technical hurdles on point-of-care assays of serum albumins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346935 | PMC |
http://dx.doi.org/10.3390/s23136020 | DOI Listing |
Biochem Biophys Res Commun
November 2024
Department of Biochemistry, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan.
Dehydrocoelenterazine (dCTZ) is a dehydrogenated form of coelenterazine (CTZ), which is well-known as the luciferin responsible for the bioluminescence reaction in marine organisms. In this report, we demonstrate for the first time that dCTZ is readily reduced to CTZ in mammalian cells. Using an FDSS®/μCell functional drug screening system, the conversion of dCTZ to CTZ in cells was identified through the luciferin (CTZ)-luciferase reaction in Chinese hamster ovary K1 (CHO-K1) cell lines, which stably expressed CTZ-utilizing luciferases of Renilla luciferase (RLase) or QL-nanoKAZ (a mutant of the 19 kDa protein of Oplophorus luciferase).
View Article and Find Full Text PDFNeuroimage
November 2024
Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14642, USA; The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Center for Visual Science, University of Rochester, Rochester NY 14642, USA. Electronic address:
BioLuminescent OptoGenetics ("BL-OG") is a chemogenetic method that can evoke optogenetic reactions in the brain non-invasively. In BL-OG, an enzyme that catalyzes a light producing reaction (i.e.
View Article and Find Full Text PDFMolecules
August 2024
Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
luciferase (Gluc) is currently known as the smallest naturally secreted luciferase. Due to its small molecular size, high sensitivity, short half-life, and high secretion efficiency, it has become an ideal reporter gene and is widely used in monitoring promoter activity, studying protein-protein interactions, protein localization, high-throughput drug screening, and real-time monitoring of tumor occurrence and development. Although studies have shown that different Gluc mutations exhibit different bioluminescent properties, their mechanisms have not been further investigated.
View Article and Find Full Text PDFBioconjug Chem
September 2024
Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan.
Bioluminescence (BL) generated by luciferase-coelenterazine (CTZ) reactions is broadly employed as an optical readout in bioassays and in vivo molecular imaging. In this study, we demonstrate a systematic approach to elucidate the luciferase-CTZ binding chemistry with a full set of regioisomeric CTZ analogs, where all the functional groups were regiochemically modified. When the chemical structures were categorized into Groups 1-6, the even-numbered Groups (2, 4, and 6) of the CTZ analogs are found to be exceptionally bright with NanoLuc enzyme.
View Article and Find Full Text PDFDrug Deliv Transl Res
August 2024
Department of Pharmacology, Institute of Pharmacy, Nirma University, S G Highway, Ahmedabad, 382481, Gujarat, India.
Fungal infections are the fourth common cause of infection affecting around 50 million populations across the globe. Dermatophytes contribute to the majority of superficial fungal infections. Clotrimazole (CTZ), an imidazole derivative is widely preferred for the treatment of topical fungal infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!