Analyzing unstable gait patterns from Electroencephalography (EEG) signals is vital to develop real-time brain-computer interface (BCI) systems to prevent falls and associated injuries. This study investigates the feasibility of classification algorithms to detect walking instability utilizing EEG signals. A 64-channel Brain Vision EEG system was used to acquire EEG signals from 13 healthy adults. Participants performed walking trials for four different stable and unstable conditions: (i) normal walking, (ii) normal walking with medial-lateral perturbation (MLP), (iii) normal walking with dual-tasking (Stroop), (iv) normal walking with center of mass visual feedback. Digital biomarkers were extracted using wavelet energy and entropies from the EEG signals. Algorithms like the ChronoNet, SVM, Random Forest, gradient boosting and recurrent neural networks (LSTM) could classify with 67 to 82% accuracy. The classification results show that it is possible to accurately classify different gait patterns (from stable to unstable) using EEG-based digital biomarkers. This study develops various machine-learning-based classification models using EEG datasets with potential applications in detecting unsteady gait neural signals and intervening by preventing falls and injuries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346345PMC
http://dx.doi.org/10.3390/s23136005DOI Listing

Publication Analysis

Top Keywords

eeg signals
16
normal walking
16
patterns electroencephalography
8
gait patterns
8
stable unstable
8
digital biomarkers
8
walking
7
signals
6
eeg
6
classifying unstable
4

Similar Publications

Systematic Review of EEG-Based Imagined Speech Classification Methods.

Sensors (Basel)

December 2024

Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

This systematic review examines EEG-based imagined speech classification, emphasizing directional words essential for development in the brain-computer interface (BCI). This study employed a structured methodology to analyze approaches using public datasets, ensuring systematic evaluation and validation of results. This review highlights the feature extraction techniques that are pivotal to classification performance.

View Article and Find Full Text PDF

Monitoring cerebral oxygenation and metabolism, using a combination of invasive and non-invasive sensors, is vital due to frequent disruptions in hemodynamic regulation across various diseases. These sensors generate continuous high-frequency data streams, including intracranial pressure (ICP) and cerebral perfusion pressure (CPP), providing real-time insights into cerebral function. Analyzing these signals is crucial for understanding complex brain processes, identifying subtle patterns, and detecting anomalies.

View Article and Find Full Text PDF

One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible rehabilitation. Providing remote MI training raises challenges to ensuring an accurate recognition of MI tasks by healthcare providers, in addition to managing computation and communication costs.

View Article and Find Full Text PDF

The precise localization of epileptic foci with the help of EEG or iEEG signals is still a clinical challenge with current methodology, especially if the foci are not close to individual electrodes. On the research side, dipole reconstruction for focus localization is a topic of recent and current developments. Relatively low numbers of recording electrodes cause ill-posed and ill-conditioned problems in the inversion of lead-field matrices to calculate the focus location.

View Article and Find Full Text PDF

Electroencephalography (EEG) has emerged as a pivotal tool in both research and clinical practice due to its non-invasive nature, cost-effectiveness, and ability to provide real-time monitoring of brain activity. Wearable EEG technology opens new avenues for consumer applications, such as mental health monitoring, neurofeedback training, and brain-computer interfaces. However, there is still much to verify and re-examine regarding the functionality of these devices and the quality of the signal they capture, particularly as the field evolves rapidly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!