Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pisco is an alcoholic beverage obtained from grape juice distillation. Considered the flagship drink of Peru, it is produced following strict and specific quality standards. In this work, sensing results for volatile compounds in pisco, obtained with an electronic nose, were analyzed through the application of machine learning algorithms for the differentiation of pisco varieties. This differentiation aids in verifying beverage quality, considering the parameters established in its Designation of Origin". For signal processing, neural networks, multiclass support vector machines and random forest machine learning algorithms were implemented in MATLAB. In addition, data augmentation was performed using a proposed procedure based on interpolation-extrapolation. All algorithms trained with augmented data showed an increase in performance and more reliable predictions compared to those trained with raw data. From the comparison of these results, it was found that the best performance was achieved with neural networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347005 | PMC |
http://dx.doi.org/10.3390/s23135864 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!