A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Advanced Noise Indicator Mapping Relying on a City Microphone Network. | LitMetric

Advanced Noise Indicator Mapping Relying on a City Microphone Network.

Sensors (Basel)

WAVES Research Group, Department of Information Technology, Ghent University, Technologiepark 126, B 9052 Gent-Zwijnaarde, Belgium.

Published: June 2023

In this work, a methodology is presented for city-wide road traffic noise indicator mapping. The need for direct access to traffic data is bypassed by relying on street categorization and a city microphone network. The starting point for the deterministic modeling is a previously developed but simplified dynamic traffic model, the latter necessary to predict statistical and dynamic noise indicators and to estimate the number of noise events. The sound propagation module combines aspects of the CNOSSOS and QSIDE models. In the next step, a machine learning technique-an artificial neural network in this work-is used to weigh the outcomes of the deterministic predictions of various traffic parameter scenarios (linked to street categories) to approach the measured indicators from the microphone network. Application to the city of Barcelona showed that the differences between predictions and measurements typically lie within 2-3 dB, which should be positioned relative to the 3 dB variation in street-side measurements when microphone positioning relative to the façade is not fixed. The number of events is predicted with 30% accuracy. Indicators can be predicted as averages over day, evening and night periods, but also at an hourly scale; shorter time periods do not seem to negatively affect modeling accuracy. The current methodology opens the way to include a broad set of noise indicators in city-wide environmental noise impact assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346359PMC
http://dx.doi.org/10.3390/s23135865DOI Listing

Publication Analysis

Top Keywords

microphone network
12
noise indicator
8
indicator mapping
8
city microphone
8
noise indicators
8
noise
5
advanced noise
4
mapping relying
4
relying city
4
microphone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!