A Novel Energy-Efficient Reservation System for Edge Computing in 6G Vehicular Ad Hoc Network.

Sensors (Basel)

Renewable Energy Laboratory, Communications and Networks Engineering Department, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia.

Published: June 2023

The roadside unit (RSU) is one of the fundamental components in a vehicular ad hoc network (VANET), where a vehicle communicates in infrastructure mode. The RSU has multiple functions, including the sharing of emergency messages and the updating of vehicles about the traffic situation. Deploying and managing a static RSU (sRSU) requires considerable capital and operating expenditures (CAPEX and OPEX), leading to RSUs that are sparsely distributed, continuous handovers amongst RSUs, and, more importantly, frequent RSU interruptions. At present, researchers remain focused on multiple parameters in the sRSU to improve the vehicle-to-infrastructure (V2I) communication; however, in this research, the mobile RSU (mRSU), an emerging concept for sixth-generation (6G) edge computing vehicular ad hoc networks (VANETs), is proposed to improve the connectivity and efficiency of communication among V2I. In addition to this, the mRSU can serve as a computing resource for edge computing applications. This paper proposes a novel energy-efficient reservation technique for edge computing in 6G VANETs that provides an energy-efficient, reservation-based, cost-effective solution by introducing the concept of the mRSU. The simulation outcomes demonstrate that the mRSU exhibits superior performance compared to the sRSU in multiple aspects. The mRSU surpasses the sRSU with a packet delivery ratio improvement of 7.7%, a throughput increase of 5.1%, a reduction in end-to-end delay by 4.4%, and a decrease in hop count by 8.7%. The results are generated across diverse propagation models, employing realistic urban scenarios with varying packet sizes and numbers of vehicles. However, it is important to note that the enhanced performance parameters and improved connectivity with more nodes lead to a significant increase in energy consumption by 2%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346643PMC
http://dx.doi.org/10.3390/s23135817DOI Listing

Publication Analysis

Top Keywords

edge computing
16
vehicular hoc
12
novel energy-efficient
8
energy-efficient reservation
8
computing vehicular
8
hoc network
8
computing
5
rsu
5
mrsu
5
reservation system
4

Similar Publications

Digital-based emergency prevention and control system: enhancing infection control in psychiatric hospitals.

BMC Med Inform Decis Mak

January 2025

Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, No. 36 Fangcun Mingxin Road, Liwan District, Guangzhou, 510370, China.

Background: The practical application of infectious disease emergency plans in mental health institutions during the ongoing pandemic has revealed significant shortcomings. These manifest as chaotic management of mental health care, a lack of hospital infection prevention and control (IPC) knowledge among medical staff, and unskilled practical operation. These factors result in suboptimal decision-making and emergency response execution.

View Article and Find Full Text PDF
Article Synopsis
  • Schizophrenia (SZ) is a complex mental disorder that affects various aspects of a person's functioning and is typically diagnosed based on subjective evaluations by psychiatrists, which can lead to biases and inaccuracies.
  • A new model called SchizoLMNet, which uses modified MobileNetV2 architecture, is introduced to diagnose SZ more effectively by analyzing EEG signals transformed into spectrogram images, boasting high accuracy rates in distinguishing between SZ and healthy individuals.
  • This innovative framework seeks to advance into real-time clinical applications using mobile technology, enhancing communication between medical professionals and patients to improve SZ management.
View Article and Find Full Text PDF

The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.

View Article and Find Full Text PDF

Land Surface Temperature (LST) is widely recognized as a sensitive indicator of climate change, and it plays a significant role in ecological research. The ERA5-Land LST dataset, developed and managed by the European Centre for Medium-Range Weather Forecasts (ECMWF), is extensively used for global or regional LST studies. However, its fine-scale application is limited by its low spatial resolution.

View Article and Find Full Text PDF

Perovskite retinomorphic image sensor for embodied intelligent vision.

Sci Adv

January 2025

Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Retinomorphic systems that can see, recognize, and respond to real-time environmental information will extend the complexity and range of tasks that an exoskeleton robot can perform to better assist physically disabled people. However, the lack of ultrasensitive, reconfigurable, and large-scale integratable retinomorphic devices and advanced edge-processing algorithms makes it difficult to realize retinomorphic hardware. Here, we report the retinomorphic hardware prototype with a 4096-pixel perovskite image sensor array as core module to endow embodied intelligent vision functionalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!