Through wearable sensors and deep learning techniques, biomechanical analysis can reach beyond the lab for clinical and sporting applications. Transformers, a class of recent deep learning models, have become widely used in state-of-the-art artificial intelligence research due to their superior performance in various natural language processing and computer vision tasks. The performance of transformer models has not yet been investigated in biomechanics applications. In this study, we introduce a Biomechanical Multi-activity Transformer-based model, BioMAT, for the estimation of joint kinematics from streaming signals of multiple inertia measurement units (IMUs) using a publicly available dataset. This dataset includes IMU signals and the corresponding sagittal plane kinematics of the hip, knee, and ankle joints during multiple activities of daily living. We evaluated the model's performance and generalizability and compared it against a convolutional neural network long short-term model, a bidirectional long short-term model, and multi-linear regression across different ambulation tasks including level ground walking (LW), ramp ascent (RA), ramp descent (RD), stair ascent (SA), and stair descent (SD). To investigate the effect of different activity datasets on prediction accuracy, we compared the performance of a universal model trained on all activities against task-specific models trained on individual tasks. When the models were tested on three unseen subjects' data, BioMAT outperformed the benchmark models with an average root mean square error (RMSE) of 5.5 ± 0.5°, and normalized RMSE of 6.8 ± 0.3° across all three joints and all activities. A unified BioMAT model demonstrated superior performance compared to individual task-specific models across four of five activities. The RMSE values from the universal model for LW, RA, RD, SA, and SD activities were 5.0 ± 1.5°, 6.2 ± 1.1°, 5.8 ± 1.1°, 5.3 ± 1.6°, and 5.2 ± 0.7° while these values for task-specific models were, 5.3 ± 2.1°, 6.7 ± 2.0°, 6.9 ± 2.2°, 4.9 ± 1.4°, and 5.6 ± 1.3°, respectively. Overall, BioMAT accurately estimated joint kinematics relative to previous machine learning algorithms across different activities directly from the sequence of IMUs signals instead of time-normalized gait cycle data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346710 | PMC |
http://dx.doi.org/10.3390/s23135778 | DOI Listing |
Elife
January 2025
Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands.
This study investigates the functional network underlying response inhibition in the human brain, particularly the role of the basal ganglia in successful action cancellation. Functional magnetic resonance imaging (fMRI) approaches have frequently used the stop-signal task to examine this network. We merge five such datasets, using a novel aggregatory method allowing the unification of raw fMRI data across sites.
View Article and Find Full Text PDFPhysiology (Bethesda)
January 2025
Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
Recent developments in artificial intelligence (AI) may significantly alter physiological research and healthcare delivery. Whereas AI applications in medicine have historically been trained for specific tasks, recent technological advances have produced models trained on more diverse datasets with much higher parameter counts. These new, "foundation" models raise the possibility that more flexible AI tools can be applied to a wider set of healthcare tasks than in the past.
View Article and Find Full Text PDFSelf-supervised learning (SSL) is an approach to pretrain models with unlabeled datasets and extract useful feature representations such that these models can be easily fine-tuned for various downstream tasks. Self-pretraining applies SSL on curated task-specific datasets without using task-specific labels. Increasing availability of public data repositories has now made it possible to utilize diverse and large, task unrelated datasets to pretrain models in the "wild" using SSL.
View Article and Find Full Text PDFModeling long-range DNA dependencies is crucial for understanding genome structure and function across a wide range of biological contexts. However, effectively capturing these extensive dependencies, which may span millions of base pairs in tasks such as three-dimensional (3D) chromatin folding prediction, remains a significant challenge. Furthermore, a comprehensive benchmark suite for evaluating tasks that rely on long-range dependencies is notably absent.
View Article and Find Full Text PDFNeural Netw
January 2025
Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 138632, Singapore.
Pre-training and fine-tuning have become popular due to the rich representations embedded in large pre-trained models, which can be leveraged for downstream medical tasks. However, existing methods typically either fine-tune all parameters or only task-specific layers of pre-trained models, overlooking the variability in input medical images. As a result, these approaches may lack efficiency or effectiveness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!