A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Designing Sustainable Polymer Blends: Tailoring Mechanical Properties and Degradation Behaviour in PHB/PLA/PCL Blends in a Seawater Environment. | LitMetric

Designing Sustainable Polymer Blends: Tailoring Mechanical Properties and Degradation Behaviour in PHB/PLA/PCL Blends in a Seawater Environment.

Polymers (Basel)

PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, N37 HD68 Athlone, Ireland.

Published: June 2023

Biodegradable polyesters are a popular choice for both packaging and medical device manufacture owing to their ability to break down into harmless components once they have completed their function. However, commonly used polyesters such as poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL), while readily available and have a relatively low price compared to other biodegradable polyesters, do not meet the degradation profiles required for many applications. As such, this study aimed to determine if the mechanical and degradation properties of biodegradable polymers could be tailored by blending different polymers. The seawater degradation mechanisms were evaluated, revealing surface erosion and bulk degradation in the blends. The extent of degradation was found to be dependent on the specific chemical composition of the polymer and the blend ratio, with degradation occurring via hydrolytic, enzymatic, oxidative, or physical pathways. PLA presents the highest tensile strength (67 MPa); the addition of PHB and PCL increased the flexibility of the samples; however, the tensile strength reduced to 25.5 and 18 MPa for the blends 30/50/20 and 50/25/25, respectively. Additionally, PCL presented weight loss of up to 10 wt.% and PHB of up to 6 wt.%; the seawater degradation in the blends occurs by bulk and surface erosion. The blending process facilitated the flexibility of the blends, enabling their use in diverse industrial applications such as medical devices and packaging. The proposed methodology produced biodegradable blends with tailored properties within a seawater environment. Additionally, further tests that fully track the biodegradation process should be put in place; incorporating compatibilizers might promote the miscibility of different polymers, improving their mechanical properties and biodegradability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347181PMC
http://dx.doi.org/10.3390/polym15132874DOI Listing

Publication Analysis

Top Keywords

mechanical properties
8
degradation
8
seawater environment
8
biodegradable polyesters
8
seawater degradation
8
surface erosion
8
degradation blends
8
tensile strength
8
blends
7
designing sustainable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!