Polymeric composites such as Poly-ether-ether-ketone (PEEK)/carbon fiber (CF) have been widely utilized due to outstanding performances such as high specific strength and specific modulus. The PEEK/CF components via powder bed fusion additive manufacturing usually show brittle fracture behaviors induced by their poor interfacial affinity and inner voids. These defects are strongly associated with powder packing quality upon deposition. The particle dynamic model has been widely employed to study the interactions of particle motions. Powder property, bulk material property, and interfacial features of composite powders are key factors in the particle dynamic model. In this work, an efficient and systematic material evaluation is developed for composite powders to investigate their deposition mechanism. The discrete element method is utilized to simulate the dynamic behaviors of PEEK/CF composite powders. The powder properties, bulk material properties, and interfacial features of powders are calibrated and justified by experimental measurement, numerical simulation, and design of experiments. The particle dynamic model can explain the powder flow behaviors and interactions. The experimental and simulation AOR results show a maximal deviation of 4.89%. It reveals that the addition of short CF particles can assist the flow of PEEK powders and improve the packing quality of the composite powders. The results show an experimental improvement of 31.3% and 55.2% for PEEK/CF_30wt% and PEEK/CF_50wt%, with a simulated improvement of 27.4% and 50.2% for corresponding composite powders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346939PMC
http://dx.doi.org/10.3390/polym15132863DOI Listing

Publication Analysis

Top Keywords

composite powders
20
particle dynamic
12
dynamic model
12
material evaluation
8
peek/cf composite
8
powder bed
8
bed fusion
8
packing quality
8
bulk material
8
interfacial features
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!