In the present work, by means of computer simulation, we studied the adsorption and diffusion of polyelectrolyte macromolecules on oppositely charged surfaces. We considered the surface coverage and the charge of the adsorbed layer depending on the ionization degree of the macromolecules and the charge of the surface and carried out a computer experiment on the polymer diffusion within the adsorbed layers, taking into account its strong dependency on the surface coverage and the macromolecular ionization degree. The different regimes were distinguished that provided maximal mobility of the polymer chains along with a high number of charged groups in the layer, which could be beneficial for the development of the functional coatings. The results were compared with those of previous experiments on the adsorption of polyelectrolyte layers that may be applied as biocidal renewable coatings that can reversibly desorb from the surface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346556 | PMC |
http://dx.doi.org/10.3390/polym15132845 | DOI Listing |
Sci Rep
January 2025
Department of Mechanical Engineering, PSG Institute of Technology and Applied Research, Coimbatore, 641026, India.
Typical waveforms used for the simulation of pressure and volume-controlled ventilation in medical ventilators have been extensively studied in the literature. The majority of simulation studies reported employ the step pattern or ramp pattern to model the pressure and flow variations in pressure/volume-controlled ventilation. It was observed that the above waveforms tend to add to the discomfort level of patients due to the presence of jerks in derivatives of pressure/flow variations; the pressure/flow variation of air and oxygen mixture should be smooth so that the patient discomfort is kept at a minimal level.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.
This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.
View Article and Find Full Text PDFSci Rep
January 2025
ENET Centre, VSB-Technical University of Ostrava, Ostrava, 708 00, Czech Republic.
Steam condensers are vital components of thermal power plants, responsible for converting turbine exhaust steam back into water for reuse in the power generation cycle. Effective pressure regulation is crucial to ensure operational efficiency and equipment safety. However, conventional control strategies, such as PI, PI-PDn and FOPID controllers, often struggle to manage the nonlinearities and disturbances inherent in steam condenser systems.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.
This study aims to evaluate and compare the usability and performance of mixed reality (MR) technology versus conventional methods for preoperative planning of patient-specific reconstruction plates for orbital fractures. A crossover study design was used to compare MR technology with conventional three-dimensional (3D) printing approaches in the planning of maxillofacial traumatology treatments. The primary focus was on user-friendliness and the accuracy of patient-specific reconstruction planning.
View Article and Find Full Text PDFSci Rep
January 2025
Research Institute for Brain Development and Peak Performance, RUDN University, Moscow, Russia.
Maze tasks, originally developed in animal research, have become a popular method for studying human cognition, particularly with the advent of virtual reality. However, these experiments frequently rely on simplified environments and tasks, which may not accurately reflect the complexity of real-world situations. Our pilot study aims to transfer a multi-alternative maze with a complex task structure, previously demonstrated to be useful in studying animal cognition, to studying human spatial cognition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!