Due to the high demand for optoelectronics for use in new materials and processes, as well as the search for their modeling properties, the expansion of the functionality of modified materials using nanotechnology methods is relevant and timely. In the current paper, a specific nanotechnology approach is shown to increase the refractive and photoconductive parameters of the organic conjugated materials. The sensitization process, along with laser treatment, are presented in order to improve the basic physical-chemical properties of laser, solar energy, and general photonics materials. Effective nanoparticles, such as fullerenes, shungites, reduced graphene oxides, carbon nanotubes, etc., are used in order to obtain the bathochromic shift, increase the laser-induced change in the refractive index, and amplify the charge carrier mobility of the model matrix organics sensitized with these nanoparticles. The four-wave mixing technique is applied to test the main refractive characteristics of the studied materials. Volt-current measurements are used to estimate the increased charge carrier mobility. The areas of application for the modified nanostructured plastic matrixes are discussed and extended, while also taking into account the surface relief.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346330PMC
http://dx.doi.org/10.3390/polym15132819DOI Listing

Publication Analysis

Top Keywords

charge carrier
8
carrier mobility
8
materials
6
refractive
4
refractive properties
4
properties conjugated
4
conjugated organic
4
organic materials
4
materials doped
4
doped fullerenes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!