Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Continuous in vivo monitoring (CIVM) of pH value is essential for personalized medicine, as many diseases are closely related to acid-base imbalances. However, conventional pH meters are limited in their ability to perform CIVM due to excessive blood consumption, large device volume, frequent calibration, and inadequate real-time monitoring. There is thus an urgent need for a portable method for CIVM of pH value. To address this need, we propose a minimally invasive, continuous monitoring solution in the form of an implantable pH microneedle sensor (MNS) in this study. The MNS is based on the integration of an acupuncture needle (AN) and a Ag/AgCl reference electrode. We fabricate the sensor by electrochemically depositing platinum black and gold nanoparticles onto the AN and further modifying it with polyaniline to increase its sensitivity to hydrogen ions. The pH value is obtained by calculating the open circuit voltage between the modified AN and the reference electrode. The resulting MNS demonstrates excellent selectivity and a high nernstian response to pH (-57.4 mV per pH) over a broad range (pH = 4.0 to pH = 9.0). Both in vitro and in vivo experiments have verified the performance of the sensor, showcasing its potential for biomedical research and clinical practice. The MNS provides an alternative to conventional pH meters, offering a less invasive and more convenient way to perform CIVM of pH value. Moreover, this electrochemical implantable sensor based on AN and silver wires provides a simple and sensitive method for continuous in vivo detection of other biomarkers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346494 | PMC |
http://dx.doi.org/10.3390/polym15132796 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!