The search to deliver added value to industrialized biobased materials, such as cellulose derivatives, is a relevant aspect in the scientific, technological and innovation fields at present. To address these aspects, films of cellulose acetate (CA) and a perylene derivative (Pr) were fabricated using a solution-casting method with two different compositions. Consequently, these samples were exposed to dimethylformamide (DMF) solvent vapors so that its influence on the optical, wettability, and topographical properties of the films could be examined. The results demonstrated that solvent vapor could induce the apparent total or partial preferential orientation/migration of Pr toward the polymer-air interface. In addition, photocatalytic activities of the non-exposed and DMF vapor-exposed films against the degradation of methylene blue (MB) in an aqueous medium using light-emitting diode visible light irradiation were comparatively investigated. Apparently, the observed improvement in the performance of these materials in the MB photodegradation process is closely linked to the treatment with solvent vapor. Results from this study have allowed us to propose the fabrication and use of the improved photoactivity "all-organic" materials for potential applications in dye photodegradation in aqueous media.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346945 | PMC |
http://dx.doi.org/10.3390/polym15132787 | DOI Listing |
Inorg Chem
January 2025
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China.
Copper-based halides have attracted significant attention due to their unique photophysical properties and diverse coordination configurations. However, enhancing water stability and modulating structural transitions in cuprous halide materials remain challenging. In this work, we successfully synthesized three copper(I) halides, (CHP)CuBr (L1, [CHP] = hexyltriphenylphosphonium), (CHP)CuBr (L2), and (CHP)CuI (L3), via solvent volatilization, demonstrating exceptional water stability even after 27 days of submersion.
View Article and Find Full Text PDFBMC Complement Med Ther
January 2025
Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg, 2028, South Africa.
Background: Amongst all neoplastic diseases, breast cancer represents a major cause of death among the female population in developed and developing countries. Since alkaloid drugs are commonly used in chemotherapy to manage this disease, this study investigated the anti-proliferative effectiveness of alkaloid-rich fractions of Senna didymobotrya leaves only and with laser irradiation against MCF-7 breast cancer cells.
Method And Materials: A powdered sample of the plant leaves was extracted with 50% ethanol, filtered and their pH was adjusted with acid and base solution followed by partitioning with chloroform and ethyl acetate solvents.
Carbohydr Polym
March 2025
Department of Engineering and Technology, Universidade Federal Rural do Semi-Árido, Mossoró Campus, Mossoró 59625-900, Rio Grande do Norte, Brazil.
Alginate films were prepared from the brown seaweed Dictyota mertensii using glycerol as a plasticizer. The effects of extraction conditions-time, temperature, and NaCO concentration-on the optical, barrier, and mechanical properties of the films were investigated using a central composite design (CCD). ANOVA and F tests confirmed the models' statistical significance at p ≤ 0.
View Article and Find Full Text PDFVet Res Commun
January 2025
Faculty of Agriculture, University Farm, Utsunomiya University, Tochigi, 321-4415, Japan.
The purpose of this study was to improve the quality of frozen-thawed canine spermatozoa through the optimization of glycerol concentration (GC) and freezing rate in the semen freezing protocol. Ejaculates from nine dogs were diluted with an extender containing 0%, 1.5%, 3%, 6%, or 9% glycerol.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China.
Bioinspired supramolecular architectonics is attracting increasing interest due to their flexible organization and multifunctionality. However, state-of-the-art bioinspired architectonics generally take place in solvent-based circumstance, thus leading to achieving precise control over the self-assembly remains challenging. Moreover, the intrinsic difficulty of ordering the bio-organic self-assemblies into stable large-scale arrays in the liquid environment for engineering devices severely restricts their extensive applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!