A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Human Serum Albumin Nanoparticles: Synthesis, Optimization and Immobilization with Antituberculosis Drugs. | LitMetric

The aim of this study was to create nanoparticles of human serum albumin immobilized with anti-TB drugs (rifampicin, isoniazid) using the desolvation method. Central Composite Design (CCD) was applied to study the effect of albumin, urea, L-cysteine, rifampicin and isoniazid concentration on particle size, polydispersity and loading degree of the drugs. The optimized nanoparticles were spherical in shape with an average particle size of 216.7 ± 3.7 nm and polydispersity of 0.286 ± 4.9. The loading degree of rifampicin and isoniazid in the optimized nanoparticles were 44% and 27%, respectively. The obtained nanoparticles were examined by Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC); the results showed the absence of drug-polymer interactions. The drug release from the polymer matrix was studied using dialysis membranes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347201PMC
http://dx.doi.org/10.3390/polym15132774DOI Listing

Publication Analysis

Top Keywords

rifampicin isoniazid
12
human serum
8
serum albumin
8
particle size
8
loading degree
8
optimized nanoparticles
8
nanoparticles
5
albumin nanoparticles
4
nanoparticles synthesis
4
synthesis optimization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!