Dysregulation of lipid metabolism has been implicated in age-related macular degeneration (AMD), the leading cause of blindness among the elderly. Lecithin cholesterol acyltransferase (LCAT) is an important enzyme responsible for lipid metabolism, which could be regulated by DNA methylation during the development of various age-related diseases. This study aimed to assess the association between LCAT DNA methylation and the risk of AMD, and to examine whether plasma vitamin and carotenoid concentrations modified this association. A total of 126 cases of AMD and 174 controls were included in the present analysis. LCAT DNA methylation was detected by quantitative real-time methylation-1specific PCR (qMSP). Circulating vitamins and carotenoids were measured using reversed-phase high-performance liquid chromatography (RP-HPLC). DNA methylation of LCAT was significantly higher in patients with AMD than those in the control subjects. After multivariable adjustment, participants in the highest tertile of LCAT DNA methylation had a 5.37-fold higher risk (95% CI: 2.56, 11.28) of AMD compared with those in the lowest tertile. Each standard deviation (SD) increment of LCAT DNA methylation was associated with a 2.23-fold (95% CI: 1.58, 3.13) increased risk of AMD. There was a J-shaped association between LCAT DNA methylation and AMD risk (P = 0.03). Higher concentrations of plasma retinol and β-cryptoxanthin were significantly associated with decreased levels of LCAT DNA methylation, with the multivariate-adjusted β coefficient being -0.05 (95% CI: -0.08, -0.01) and -0.25 (95% CI: -0.42, -0.08), respectively. In joint analyses of LCAT DNA methylation and plasma vitamin and carotenoid concentrations, the inverse association between increased LCAT DNA methylation and AMD risk was more pronounced among participants who had a lower concentration of plasma retinol and β-cryptoxanthin. These findings highlight the importance of comprehensively assessing LCAT DNA methylation and increasing vitamin and carotenoid status for the prevention of AMD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347047PMC
http://dx.doi.org/10.3390/nu15132985DOI Listing

Publication Analysis

Top Keywords

dna methylation
48
lcat dna
36
dna
12
methylation
12
lcat
12
vitamin carotenoid
12
amd
9
vitamins carotenoids
8
methylation lcat
8
age-related macular
8

Similar Publications

Background: Brain intraparenchymal schwannoma is a rare clinical entity, generally curable with adequate resection.

Methods And Results: We describe a case in a male patient first presenting at 19 months of age, the youngest reported age for this lesion. It also appears to be the first case connected to a germline TSC2 p.

View Article and Find Full Text PDF

DNA methylation is a crucial epigenetic modification that orchestrates chromatin remodelers that suppress transcription, and aberrations in DNA methylation result in a variety of conditions such as cancers and developmental disorders. While it is understood that methylation occurs at CpG-rich DNA regions, it is less understood how distinct methylation profiles are established within various cell types. In this work, we develop a molecular-transport model that depicts the genomic exploration of DNA methyltransferase within a multiscale DNA environment, incorporating biologically relevant factors like methylation rate and CpG density to predict how patterns are established.

View Article and Find Full Text PDF

Zebularine-treated wheat uncovered a phenotype with characteristics of an epigenetically regulated trait, but major chromosomal aberrations, not DNA methylation changes, are the cause, making zebularine unsuitable for epigenetic breeding. Breeding to identify disease-resistant and climate-tolerant high-yielding wheats has led to yield increases over many years, but new hardy, higher yielding varieties are still needed to improve food security in the face of climate change. Traditional breeding to develop new cultivars of wheat is a lengthy process taking more than seven years from the initial cross to cultivar release.

View Article and Find Full Text PDF

Selective adsorption of unmethylated DNA on ZnO nanowires for separation of methylated DNA.

Lab Chip

January 2025

Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.

DNA methylation is a crucial epigenetic modification used as a biomarker for early cancer progression. However, existing methods for DNA methylation analysis are complex, time-consuming, and prone to DNA degradation. This work demonstrates selective capture of unmethylated DNAs using ZnO nanowires without chemical or biological modifications, thereby concentrating methylated DNA, particularly those with high methylation levels that can predict cancer risk.

View Article and Find Full Text PDF

Unlabelled: causes bacterial cold-water disease (BCWD) in salmonids and other fish, resulting in substantial economic losses in aquaculture worldwide. The mechanisms uses to cause disease are poorly understood. Despite considerable effort, most strains of have resisted attempts at genetic manipulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!