Wind and water erosion processes can lead to soil degradation. Topographic factors also affect the variation of soil properties. The effect of topographic factors on soil properties in regions where wind and water erosion simultaneously occur remains complicated. To address this effect, we conducted this study to determine the relationships between the changes in wind-water erosion and soil properties in different topographic contexts. We collected soil samples from conical landforms with different slope characteristics and positions in the wind-water erosion crisscross region of China. We examined the soil Cs inventory, soil organic carbon (SOC), total nitrogen (TN), soil particles, soil water content (SWC), and biomass. Cs was applied to estimate soil erosion. The results show that the soil erosion rate followed the order of northwest slope > southwest slope > northeast slope > southeast slope. The soil erosion rate on the northwest slope was about 12.06-58.47% higher than on the other. Along the slopes, the soil erosion rate decreased from the upper to the lower regions, and was 65.65% higher at the upper slope than at the lower one. The change in soil erosion rate was closely related to soil properties. The contents of SOC, TN, clay, silt, SWC, and biomass on the northern slopes (northwest and northeast slopes) were lower than those on the southern slopes (southeast and southwest slopes), and they were lower at the upper slope than at the lower one. Redundancy analysis showed that the variation in soil properties was primarily affected by the slope aspect, and less affected by soil erosion, accounting for 56.1% and 30.9%, respectively. The results demonstrate that wind-water erosion accelerates the impact of topographic factors on soil properties under slope conditions. Our research improves our understanding of the mechanisms of soil degradation in gully regions where wind and water erosion simultaneously occur.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347127 | PMC |
http://dx.doi.org/10.3390/plants12132568 | DOI Listing |
Front Microbiol
January 2025
College of Agriculture, Shandong Agricultural University/National Key Laboratory of Wheat Improvement, Taian, China.
Continuous monocropping of peanuts (.) often results in yield decline and soil degradation. The combination of green manure (GM) with tillage practices has been proposed as a sustainable strategy to maintain high crop productivity and improve soil quality.
View Article and Find Full Text PDFBioscience
May 2024
Climate Change Institute, School of Biology and Ecology, University of Maine, Orono, Maine, United States.
The competitive success of ferns has been foundational to hypotheses about terrestrial recolonization following biotic upheaval, from wildfires to the Cretaceous-Paleogene asteroid impact (66 million years ago). Rapid fern recolonization in primary successional environments has been hypothesized to be driven by ferns' high spore production and wind dispersal, with an emphasis on their competitive advantages as so-called disaster taxa. We propose that a competition-based view of ferns is outdated and in need of reexamination in light of growing research documenting the importance of positive interactions (i.
View Article and Find Full Text PDFFood Res Int
February 2025
Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy.
Periweissella beninensis LMG 25373, belonging to the recently established Periweissella genus, exhibits unique motility and high adhesion capabilities, indicating significant probiotic potential, including resilience under simulated gastrointestinal conditions. This study demonstrates for the first time that P. beninensis LMG 25373^T produces a dextran-type exopolysaccharide (EPS) with a distinctive high degree of branching (approximately 71 % of α-(1 → 6)-linkages and 29 % α-(1 → 3)-linkages).
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States.
Saltwater intrusion (SWI) is a concerning issue impacting agricultural production and soil C cycling, which can have a wider effect on the climate. Complex soil processes driving soil C cycling following saltwater intrusion have not yet been fully quantified. Agricultural fields with varying degrees of saltwater intrusion, unaffected control, and native tidal marsh were studied to understand the impacts of saltwater intrusion on soil properties and soil carbon dynamics.
View Article and Find Full Text PDFSci Rep
January 2025
College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province, China.
The unsaturated hydraulic conductivity (K) is one of the most important properties for evaluating moisture and gas migration in soil. However, the precise measurement of K in the laboratory often requires considerable time and economic costs. Currently, the most commonly used method to calculate K is to obtain it from the soil-water characteristic curve (SWCC) and saturated hydraulic conductivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!