Anthropic diesel-derived contamination of Mediterranean coastal waters is of great concern. Nature-based solutions such as phytoremediation are considered promising technologies to remove contaminants from marine environments. The aim of this work was to investigate the tolerance of the Mediterranean autochthonous seaweed (Forsskal) Lamouroux to diesel fuel and its hydrocarbon degradation potential. Changes in traits, including its associated bacterial community abundance and structure, were determined by fluorescence microscopy and next-generation sequencing techniques. Thalli of artificially exposed to increasing concentration of diesel fuel for 30 days and thalli collected from three natural sites with different levels of seawater diesel-derived hydrocarbons were analysed. Gas chromatography was applied to determine the seaweed hydrocarbon degradation potential. Overall, in controlled conditions the lower concentration of diesel (0.01%) did not affect survival and growth, whereas the higher concentration (1%) resulted in high mortality and blade damages. Similarly, only natural thalli, collected at the most polluted marine site (750 mg L), were damaged. A higher abundance of epiphytic bacteria, with a higher relative abundance of Vibrio bacteria, was positively correlated to the health status of the seaweed as well as to its diesel-degradation ability. In conclusion, tolerated and degraded moderate concentrations of seawater diesel-derived compounds, especially changing the abundance and community structure of its bacterial coating. The protection and exploitation of this autochthonous natural seaweed-bacteria symbiosis represents a useful strategy to mitigate the hydrocarbon contamination in moderate polluted Mediterranean costal environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346704 | PMC |
http://dx.doi.org/10.3390/plants12132507 | DOI Listing |
Amplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Food Science and Hygiene, Faculty of Veterinary Science Ilam University Ilam Iran.
In this study, the extract of leaf and flower of was obtained using an ultrasonic-assisted extraction method. The extraction yield and the content of phenolic, flavonoid, and flavonol compounds in the flower extract were higher (13.93%, 74.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
Purpose: Multi-walled carbon nanotubes (MWCNTs) were used as carriers for silver nanoparticles (AgNPs). In this process, MWCNTs were coated with mesoporous silica (MWCNT-Silica) for uniform and regular loading of AgNPs on the MWCNTs. In addition, astaxanthin (AST) extract was used as a reducing agent for silver ions to enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Materials Engineering, Materials and Energy Research Center, Dezful Branch, Islamic Azad University, Dezfool, Iran.
Polymer-based nanocomposite coatings that are enhanced with nanoparticles have gained recognition as effective materials for antibacterial purposes, providing improved durability and biocidal effectiveness. This research introduces an innovative chitosan-based polymer nanocomposite, enhanced with titanium oxide nanopowders and carbon quantum dots. The material was synthesized via the sol-gel process and applied to 316L stainless steel through dip-coating.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania.
This study investigates the synthesis of ZnSnO@SiO@5-FU nanoparticles as an additive for bone fillers in dental maxillofacial reconstruction. ZnSnO nanoparticles were synthesized and coated with a SiO shell, followed by the incorporation of 5-Fluorouracil (5-FU), aimed at enhancing the therapeutic properties of classical fillers. Structural analysis using X-ray diffraction confirmed that ZnSnO was the single crystalline phase present, with its crystallinity preserved after both SiO coating and 5-FU incorporation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!