Turnip yellows virus (TuYV), is one of the most important pathogens of oilseed rape, which has caused enormous yield losses in all growing regions of the world in recent years. Therefore, there is a need for resistant varieties for sustainable crop protection. We have investigated the resistance of known varieties and newly developed advanced-breeding lines of oilseed rape to TuYV in greenhouse and field trials. We have analysed the TuYV titre of individual genotypes inoculated with the virus using viruliferous aphids . The genotypes 'DK Temptation' and 'Rescator' had the lowest and highest virus titres, respectively, and were used as resistant and susceptible models for comparative analyses with other genotypes. In the greenhouse, the best results were obtained with the genotypes 'OP-8143 DH' (2.94 × 10 copies), OP-BN-72 (3.29 × 10 copies), 'Navajo' (3.58 × 10 copies) and 'SG-C 21215' (4.09 × 10 copies), which reached virus titres about 2 times higher than the minimum virus concentration measured in 'DK Temptation' (1.80 × 10 copies). In the field trials, the genotypes 'Navajo' (3.39 × 10 copies), 'OP-8148 DH' (4.44 × 10 copies), 'SG-C 21215' (6.80 × 10 copies) and OP-8480 (7.19 × 10 copies) had the lowest virus titres and reached about 3 times the virus titre of DK Temptation (2.54 × 10 copies). Both trials showed that at least two commercial varieties (e.g., DK Temptation, Navajo) and three advanced breeding lines (e.g., OP-8143 DH, OP-BN-72, SG-C 21215) had low titres of the virus after TuYV infection. This indicates a high level of resistance to TuYV in 'Navajo' or the newly developed breeding lines and the basis of resistance is probably different from R54 (as in 'DK Temptation'). Furthermore, the greenhouse trials together with RT -qPCR-based virus titre analysis could be a cost-effective and efficient method to assess the level of resistance of a given genotype to TuYV infection compared to the field trials. However, further research is needed to identify the underlying mechanisms causing this difference in susceptibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346663PMC
http://dx.doi.org/10.3390/plants12132501DOI Listing

Publication Analysis

Top Keywords

oilseed rape
12
field trials
12
'dk temptation'
12
virus titres
12
virus
10
copies
10
turnip yellows
8
yellows virus
8
virus tuyv
8
newly developed
8

Similar Publications

Background: Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed ( L.) at copper action.

View Article and Find Full Text PDF

Analysis of canopy light utilization efficiency in high-yielding rapeseed varieties.

Sci Rep

December 2024

Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, 430062, China.

The photosynthetic mechanism responsible for the differences in yield between different rapeseed varieties remains unclear, and there have been no consensus and definite conclusions about the relationship between photosynthesis and yield. Representation of the whole plant by measuring the photosynthetic performance at a single site may lead to biased results. In this study, we comprehensively analyzed the main photosynthetic organs of four high-yielding rapeseed varieties at the seedling, bud, flowering, and podding stages.

View Article and Find Full Text PDF

The glutathione S-transferase BnGSTU12 enhances the resistance of Brassica napus to Sclerotinia sclerotiorum through reactive oxygen species homeostasis and jasmonic acid signaling.

Plant Physiol Biochem

December 2024

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China. Electronic address:

Sclerotinia sclerotiorum is a severe disease that affects rapeseed (Brassica napus), resulting in significant yield losses. In previous study, we identified the candidate GLUTATHIONE S-TRANSFERASE (GST) gene, BnGSTU12, associated with sclerotiorum stem resistance and the expression levels of BnGSTU12 in resistant lines were higher than that in susceptible lines. We analyzed the function of the BnGSTU12 during S.

View Article and Find Full Text PDF

Crop plants are severely affected by heavy metals (HMs), leading to food scarcity and economical loss. Lead (Pb) is outsourced by use of lead-based fertilizers, batteries, mining, smelting and metal processing. It significantly reduces growth, development and yield of crops cultivated on contaminated sites.

View Article and Find Full Text PDF

Effects of endophytes on early growth and ascorbate metabolism in .

Front Plant Sci

December 2024

Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States.

Understanding the early interactions between plants and endophytes will contribute to a more systematic approach to enhancing endophyte-mediated effects on plant growth and environmental stress resistance. This study examined very early growth and ascorbate metabolism after seed treatment of with three different endophytes. The three endophytes used were pb1(Bapb1), (Ml) and SLB4 (SLB4).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!