Abiotic stress conditions, such as salinity, affect plant development and productivity and threaten the sustainability of agricultural production. Salt has been proven to accumulate in soil and water over time as a result of various anthropogenic activities and climatic changes. Species of the genus thrive in the most saline environments and have a wide climatic tolerance. They can be found in a variety of subtropical, oceanic, and continental environments. This study aims to establish as a novel source of plant-based compounds that can grow in areas unsuitable for other crops. The morphological and compositional changes in the tissues of in different consecutive developmental stages have not been investigated so far. Therefore, a comprehensive study of changes during the lifecycle of was carried out, following changes in the plant's composition, including biomass yield, and soluble and insoluble compounds. For this, plants were cultivated in hydroponics for 15 weeks and harvested weekly to analyze biomass production, to determine soluble and insoluble compounds, protein content, and polyphenols. According to the results, glucan, xylan, and lignin increase with plant age, while water extractives decrease. Protein content is higher in young plants, while flavonoid content depends on the phenological stage, decreasing in the early flowering stage and then increasing as plants enter early senescence. Our results can aid in finding the optimal harvesting stage of depending on the component of interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346760PMC
http://dx.doi.org/10.3390/plants12132472DOI Listing

Publication Analysis

Top Keywords

compositional changes
8
soluble insoluble
8
insoluble compounds
8
protein content
8
changes hydroponically
4
hydroponically cultivated
4
cultivated growth
4
growth stages
4
stages abiotic
4
abiotic stress
4

Similar Publications

The use of Raman spectroscopy, particularly surface-enhanced Raman spectroscopy (SERS), offers a powerful tool for analyzing biochemical changes in biofluids. This study aims to assess the modifications occurring in saliva collected from patients before and after exposure to cone beam computed tomography (CBCT) and computed tomography (CT) imaging. SERS analysis revealed significantly amplified spectra in post-imaging samples compared to pre-imaging samples, with pronounced intensification of thiocyanate and opiorphin bands, which, together with proteins, dominated the spectra.

View Article and Find Full Text PDF

A Signal-On Microelectrode Electrochemical Aptamer Sensor Based on AuNPs-MXene for Alpha-Fetoprotein Determination.

Sensors (Basel)

December 2024

Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.

As a crucial biomarker for the early warning and prognosis of liver cancer diseases, elevated levels of alpha-fetoprotein (AFP) are associated with hepatocellular carcinoma and germ cell tumors. Herein, we present a novel signal-on electrochemical aptamer sensor, utilizing AuNPs-MXene composite materials, for sensitive AFP quantitation. The AuNPs-MXene composite was synthesized through a simple one-step method and modified on portable microelectrodes.

View Article and Find Full Text PDF

Background/objectives: A sustained-release formulation of fenofibrate while enhancing drug dissolution with minimal food effect is critical for maximizing the therapeutic benefits of fenofibrate. Therefore, this study aimed to develop an effective solid dispersion formulation of fenofibrate for simultaneous enhancement in the extent and duration of drug exposure.

Methods: Fenofibrate-loaded solid dispersions (FNSDs) were prepared using poloxamer 407 and Eudragit RSPO at varied ratios via solvent evaporation.

View Article and Find Full Text PDF

Composite biopolymer hydrogel as food packaging material, apart from being environmentally favorable, faces high standards set upon food packaging materials. The feature that favors biopolymer film application is their low gas permeability under room conditions and lower relative humidity conditions. However, most biopolymer-based materials show high moisture sensitiveness and limited water vapor permeability, which limits their application for food packaging.

View Article and Find Full Text PDF

The peculiarities of the crystal formation from supersaturated aqueous solutions of CuSO on polymer substrates were studied using X-ray diffractometry. During the crystal formation, the test solutions were irradiated with one or two counter-propagating ultrasonic beams. Test solutions were prepared using natural deionized water with a deuterium content of 157 ± 1 ppm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!