Hydrogen sulfide (HS) is involved in the regulation of plant salt stress as a potential signaling molecule. This work investigated the effect of HS on cucumber growth, photosynthesis, antioxidation, ion balance, and other salt tolerance pathways. The plant height, stem diameter, leaf area and photosynthesis of cucumber seedlings were significantly inhibited by 50 mmol·L NaCl. Moreover, NaCl treatment induced superoxide anion (O) and Na accumulation and affected the absorption of other mineral ions. On the contrary, exogenous spraying of 200 μmol·L sodium hydrosulfide (NaHS) maintained the growth of cucumber seedlings, increased photosynthesis, enhanced the ascorbate-glutathione cycle (AsA-GSH), and promoted the absorption of mineral ions under salt stress. Meanwhile, NaHS upregulated , , , , and genes to maintain Na/K balance and increased the relative expression of , , , and genes to enhance salt tolerance. These positive effects of HS could be reversed by 150 mmol·L propargylglycine (PAG, a specific inhibitor of HS biosynthesis). These results indicated that HS could mitigate salt damage in cucumber, mainly by improving photosynthesis, enhancing the AsA-GSH cycle, reducing the Na/K ratio, and inducing the SOS pathway and MAPK pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346887 | PMC |
http://dx.doi.org/10.3390/plants12132450 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!