The calcium fertilization of strawberry plants ( × ) was evaluated using two types of nozzles, with two liquid pressure levels and two driving speeds. The calcium content of the leaves and fruit were analyzed via flame photometry. Higher leaf calcium content was found in plots sprayed with standard nozzles, while higher fruit calcium content was observed for those sprayed with air induction nozzles. The fruit quality was assessed by determining the basic physical and mechanical properties, using uniaxial compression tests integrated with surface pressure measurements. Different spraying techniques influenced the mechanical resistance of the fruit. A spraying speed of 5 km/h and an operating pressure of 0.4 MPa significantly increased the firmness of the fruit by ~66%, the critical load level by 36%, and the maximum surface pressure by up to 38%, but did not increase the geometrical parameters of the strawberries. Regular foliar feeding during harvest could improve the mechanical strength of strawberries. An appropriate spraying technique with a calcium agent could effectively improve the mechanical properties of the delicate fruit, which is particularly important for limiting losses during harvesting, transportation, and storage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346197PMC
http://dx.doi.org/10.3390/plants12132390DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
calcium content
12
surface pressure
8
improve mechanical
8
calcium
6
fruit
6
mechanical
5
calcium foliar
4
foliar spray
4
spray technique
4

Similar Publications

Incorporation of anthocyanin into zein nanofibrous films by electrospinning: Structural characterization, functional properties, and ammonia color-responsiveness.

Food Chem X

January 2025

Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.

Green electrospinning for the production of freshness-indicating labels, employing entirely natural biopolymers and pigments, holds significance in the development of intelligent food packaging. This study aimed to prepare zein (Z) fibrous film (FF) incorporated with varying concentrations of anthocyanin (A; 0-0.5 %) through green electrospinning.

View Article and Find Full Text PDF

Hybrid additive manufacturing for Zn-Mg casting for biomedical application.

In Vitro Model

December 2024

Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA.

Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid.

View Article and Find Full Text PDF

The potential of epoxy-graphene oxide (GO) nanocomposites to improve the mechanical characteristics of conventional epoxy resins is causing them to gain prominence. This makes them appropriate for advanced engineering applications, including structural materials, automotive, and aerospace. This study aimed to develop an epoxy/GO composite with improved mechanical properties through synthesizing epoxy/GO samples with varying GO content (from 0.

View Article and Find Full Text PDF

Soft Artificial Synapse Electronics.

Research (Wash D C)

January 2025

Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA.

Soft electronics, known for their bendable, stretchable, and flexible properties, are revolutionizing fields such as biomedical sensing, consumer electronics, and robotics. A primary challenge in this domain is achieving low power consumption, often hampered by the limitations of the conventional von Neumann architecture. In response, the development of soft artificial synapses (SASs) has gained substantial attention.

View Article and Find Full Text PDF

This study aimed to evaluate the impact of different manipulation methods and storage environments on the microstructural, chemical, and mechanical properties of calcium-enriched mixture (CEM) cement. Four sample groups were examined, including nondried (ND-I) and dried (D-I) groups placed directly in an incubator, dried samples stored in phosphate-buffered saline (PBS) (D-P), and dried samples stored in distilled water (D-W). Various analyses, including Vickers microhardness, compressive strength, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) were conducted after incubating the samples for 7 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!