A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of Novel B1R/B2R Agonists Containing TRIOZAN™ Nanoparticles for Targeted Brain Delivery of Antibodies in a Mouse Model of Alzheimer Disease. | LitMetric

The blood-brain barrier (BBB) is a major obstacle to the development of effective therapeutics for central nervous system (CNS) disorders, including Alzheimer's disease (AD). This has been particularly true in the case of monoclonal antibody (mAbs) therapeutic candidates, due to their large size. To tackle this issue, we developed new nanoformulations, comprising bio-based Triozan polymers along with kinin B1 and B2 receptor (B1R and B2R) peptide agonist analogues, as potent BBB-permeabilizers to enhance brain delivery of a new anti-C1q mAb for AD (ANX005). The prepared B1R/B2R-TRIOZAN™ nanoparticles (NPs) displayed aqueous solubility, B1R/B2R binding capacity and uniform sizes (~130-165 nm). The relative biodistribution profiles of the mAb loaded into these NPs versus the naked mAb were assessed in vivo through two routes of administrations (intravenous (IV), intranasal (IN)) in the Tg-SwDI mouse model of AD. At 24 h post-administration, brain levels of the encapsulated mAb were significantly increased (up to 12-fold (IV) and 5-fold (IN), respectively) compared with free mAb in AD brain affected regions, entorhinal cortex and hippocampus of aged mice. Liver uptakes remained relatively low with similar values for the nanoformulations and free mAb. Our findings demonstrate the potential of B1R/B2R-TRIOZAN™ NPs for the targeted delivery of new CNS drugs, which could maximize their therapeutic effectiveness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343654PMC
http://dx.doi.org/10.3390/molecules28135206DOI Listing

Publication Analysis

Top Keywords

brain delivery
8
mouse model
8
free mab
8
mab
6
evaluation novel
4
novel b1r/b2r
4
b1r/b2r agonists
4
agonists triozan™
4
triozan™ nanoparticles
4
nanoparticles targeted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!