In this work, the mutual solubilities of sets of organic diluents (CHCl, CH, CHCl, CCl, CH, and n-hexane) with the organic compound ethylene glycol are investigated via gas chromatography (GC). The experimental data measured for these binary organic systems are used to adjust the future nonaqueous systems for the solvent extraction of various metals with ligands. The obtained results showed that the solubility of ethylene glycol decreased in the order CHCl > CH > CHCl > CCl(0%) ≈ CH ≈ n-hexane. On the other hand, the solubility of the tested traditional organic diluents in ethylene glycol decreased in the following order: CH > CHCl > CHCl > n-hexane > CH > CCl. H NMR was also used as an analytic method in order to compare the obtained results for the samples showing significant solubility only, including an additional study with 1,2- or 1,3-propanediol. The enhanced solubility of the CH compound in ethylene glycol was identified here as critical due to the GC technique, which will be without future consequences in chemical technology. Therefore, it was found that the best molecular diluent for the recovery of metals among the tested ones is CH, with a green protocol as the new paradigm, replacing the aqueous phase with another nonaqueous phase, i.e., a second organic diluent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343684 | PMC |
http://dx.doi.org/10.3390/molecules28135121 | DOI Listing |
ACS Nano
January 2025
Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
The blood-brain barrier (BBB) remains a major obstacle for effective delivery of therapeutics to treat central nervous system (CNS) disorders. Although transferrin receptor (TfR)-mediated transcytosis is widely employed for brain drug delivery, the inefficient release of therapeutic payload hinders their efficacy from crossing the BBB. Here, we developed a pH-responsive anti-polyethylene glycol (PEG) × anti-TfR bispecific antibody (pH-PEG engager) that can complex with PEGylated nanomedicine at physiological pH to trigger TfR-mediated transcytosis in the brain microvascular endothelial cells, while rapidly dissociating from PEGylated nanomedicine at acidic endosomes for efficient release of PEGylated nanomedicine to cross the BBB.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
Coacervates have garnered significant attention as potential drug carriers. However, the instability resulting from their intrinsic membrane-free nature restricts the application of coacervates in drug delivery. Herein, the engineering of poly(ethylene glycol) nanoparticles (PEG NPs) is reported using coacervates composed of PEG and polyphenols as the templates, where PEG is subsequently cross-linked based on different chemistries (e.
View Article and Find Full Text PDFNat Commun
January 2025
Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China.
Achieving a synergy of biocompatibility and extreme environmental adaptability with excellent mechanical property remains challenging in the development of synthetic materials. Herein, a "bottom-up" solution-interface-induced self-assembly strategy is adopted to develop a compressible, anti-fatigue, extreme environment adaptable, biocompatible, and recyclable organohydrogel composed of chitosan-lignosulfonate-gelatin by constructing noncovalent bonded conjoined network. The ethylene glycol/water solvent induced lignosulfonate nanoparticles function as bridge in chitosan/gelation network, forming multiple interfacial interactions that can effectively dissipate energy.
View Article and Find Full Text PDFScience
January 2025
KNU Institute for Microorganisms, Kyungpook National University, Daegu, Republic of Korea.
Enzymes capable of breaking down polymers have been identified from natural sources and developed for industrial use in plastic recycling. However, there are many potential starting points for enzyme optimization that remain unexplored. We generated a landscape of 170 lineages of 1894 polyethylene terephthalate depolymerase (PETase) candidates and performed profiling using sampling approaches with features associated with PET-degrading capabilities.
View Article and Find Full Text PDFAdv Mater
January 2025
Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland.
3D scaffolds enable biological investigations with a more natural cell conformation. However, the porosity of synthetic hydrogels is often limited to the nanometer scale, which confines the movement of 3D encapsulated cells and restricts dynamic cell processes. Precise control of hydrogel porosity across length scales remains a challenge and the development of porous materials that allow cell infiltration, spreading, and migration in a manner more similar to natural ECM environments is desirable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!