Effect of Substituent Groups on the Strength of Intramolecular Hydrogen Bonds in 2,4-Dihydroxybenzophenone UV Absorbers.

Molecules

Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.

Published: June 2023

2,4-Dihydroxybenzophenone is the most widely used molecule in the benzophenone group of UV absorbers. It is known that the UV absorption ability is dependent on the substituents. Numerous studies have shown that the strength of intramolecular hydrogen bonds is the main factor affecting this type of UV absorber. However, the effect of substituents on the formation and nature of the hydrogen bonds has not been well studied. In this work, the effect of the type of substituent and the substitution position on the absorption intensity of 2,4-dihydroxybenzophenone molecules is verified both experimentally and theoretically. The effect of substituents on the intramolecular hydrogen bonding of 2,4-dihydroxybenzophenone was investigated by DFT calculations. The results indicate that the addition of different substituents leads to various changes in the strength of the hydrogen bonding in 2,4-dihydroxybenzophenone. On the X-substitution site or the Y-substitution site, halogen groups and electron-absorbing groups such as -CN and -NO increase the strength of the hydrogen bond, while electron-giving groups such as -N(CH) and -OCH decrease the strength of the bond. For the same substituent, the one at the Y site has a higher effect on hydrogen bonding than that at the X site. By NBO analysis, it was found that the substituents would cause charge redistribution of the individual atoms of 2,4-dihydroxybenzophenones, thus affecting the formation and strength of the hydrogen bonds. Moreover, when the substituent is at the Y substitution site, the oxygen atom of the carbonyl group is less able to absorb electrons and more charge is attracted to the oxygen atom of the hydroxyl group, resulting in a larger charge difference between the two oxygen atoms and an increase of bond energy. Finally, a multiple linear regression analysis of the NPA charge number of the atoms involved in the formation of the hydrogen-bonded chelated six-membered ring was performed with the energy of the hydrogen bond and the percentage of influencing factors estimated, which were found to jointly affect the strength of hydrogen bonding. The aim of this study is to provide theoretical guidance for the design of benzophenone-based UV absorbers that absorb UV light of specific wavelength bands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343706PMC
http://dx.doi.org/10.3390/molecules28135017DOI Listing

Publication Analysis

Top Keywords

hydrogen bonds
16
hydrogen bonding
16
strength hydrogen
16
intramolecular hydrogen
12
hydrogen
10
strength intramolecular
8
substituent substitution
8
bonding 24-dihydroxybenzophenone
8
hydrogen bond
8
oxygen atom
8

Similar Publications

Cellulose Elementary Fibrils as Deagglomerated Binder for High-Mass-Loading Lithium Battery Electrodes.

Nanomicro Lett

January 2025

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.

Amidst the ever-growing interest in high-mass-loading Li battery electrodes, a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways. Here, we propose cellulose elementary fibrils (CEFs) as a class of deagglomerated binder for high-mass-loading electrodes. Derived from natural wood, CEF represents the most fundamental unit of cellulose with nanoscale diameter.

View Article and Find Full Text PDF

Structural and theoretical studies of amantadinium fenamates.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, Wrocław, 50-556, Poland.

Two new crystals of amantadinium salts were obtained from fenamic and tolfenamic acid. The salt of fenamic acid is a model compound for interaction analysis, while amantadinium tolfenamate is a composition of a drug used in the treatment of symptoms of Parkinsonism and as a nonsteroidal anti-inflammatory drug. The crystal structures were studied and a theoretical analysis of the hydrogen bonds and weak interactions was carried out using quantum theory of atoms in molecules (QTAIM) and non-covalent interaction (NCI) methods.

View Article and Find Full Text PDF

The structure and dynamics of water at charged graphene interfaces fundamentally influence molecular responses to electric fields with implications for applications in energy storage, catalysis, and surface chemistry. Leveraging the realism of the MB-pol data-driven many-body potential and advanced path-integral quantum dynamics, we analyze the vibrational sum frequency generation (vSFG) spectrum of graphene/water interfaces under varying surface charges. Our quantum simulations reveal a distinctive dangling OH peak in the vSFG spectrum at neutral graphene, consistent with recent experimental findings yet markedly different from those of earlier studies.

View Article and Find Full Text PDF

Weak H-Bond Interface Environment for Stable Aqueous Zinc Batteries.

ACS Nano

January 2025

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.

Hydrogen evolution reaction and Zn dendrite growth, originating from high water activity and the adverse competition between the electrochemical kinetics and mass transfer, are the main constraints for the commercial applications of the aqueous zinc-based batteries. Herein, a weak H-bond interface with a suspension electrolyte is developed by adding TiO nanoparticles into the electrolytes. Owing to the strong polarity of Ti-O bonds in TiO, abundant hydroxyl functional groups are formed between the TiO active surface and aqueous environment, which can produce a weak H-bond interface by disrupting the initial H-bond networks between the water molecules, thereby accelerating the mass transfer of Zn and reducing the water activity.

View Article and Find Full Text PDF

In recent years, antimicrobial peptides (AMPs) have emerged as a potent weapon against the growing threat of antibiotic resistance. Among AMPs, the ones containing tryptophan (W) and arginine (R) exhibit enhanced antimicrobial properties, benefiting from the unique physicochemical features of the two amino acids. Herein, we designed three hexapeptides, including WR, DWR (D-isomer), and RF, derived from the original sequence, RWWRWW-NH2 (RW).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!