Non-small cell lung cancer (NSCLC) is one of the leading cancer killers. Apigenin (Api) and Naringenin (Nar) are natural bioactive substances obtained in various vegetables and fruits, possessing anti-tumor effects across multiple studies. This study investigated the latent synergistic antiproliferative functions of Api and Nar in A549 and H1299 NSCLC cells. Cell viability was determined after incubating with different concentrations of Api, Nar, or the combination of Api and Nar (CoAN) for 24 h. Analysis using the CompuSyn software revealed that the CI value of each combined dose was < 1, depicting that the two drugs had a synergistic inhibitory effect. The CoAN (A:N = 3:2) group with the lowest CI value was selected for subsequent experiments. The IC of CoAN (A:N = 3:2) was used to determine the cell cycle, the expression ratio of Bax to Bcl2, Caspase 3 activity, and mitochondrial function to assess oxidative stress and apoptosis. The results established that CoAN treatment caused significant cytotoxicity with cell cycle arrest at G2/M phases. Furthermore, CoAN significantly enhanced mitochondria dysfunction, elevated oxidative stress, and activated the apoptotic pathway versus Api or Nar alone groups. Thus, the CoAN chemotherapy approach is promising and deserves further research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343727PMC
http://dx.doi.org/10.3390/molecules28134947DOI Listing

Publication Analysis

Top Keywords

api nar
16
nsclc cells
8
cell cycle
8
oxidative stress
8
coan
6
api
5
nar
5
synergism antiproliferative
4
antiproliferative effects
4
effects apigenin
4

Similar Publications

ClinVar: updates to support classifications of both germline and somatic variants.

Nucleic Acids Res

November 2024

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA.

ClinVar (www.ncbi.nlm.

View Article and Find Full Text PDF

Space biology and health data are critical for the success of deep space missions and sustainable human presence off-world. At the core of effectively managing biomedical risks is the commitment to open science principles, which ensure that data are findable, accessible, interoperable, reusable, reproducible and maximally open. The 2021 integration of the Ames Life Sciences Data Archive with GeneLab to establish the NASA Open Science Data Repository significantly enhanced access to a wide range of life sciences, biomedical-clinical and mission telemetry data alongside existing 'omics data from GeneLab.

View Article and Find Full Text PDF

Ribosome profiling (Ribo-Seq) has revolutionised our understanding of translation, but the increasing complexity and volume of Ribo-Seq data present challenges for its reuse. Here, we formally introduce RiboSeq.Org, an integrated suite of resources designed to facilitate Ribo-Seq data analysis and visualisation within a web browser.

View Article and Find Full Text PDF

Secondary metabolites are small molecules produced by all corners of life, often with specialized bioactive functions with clinical and environmental relevance. Secondary metabolite biosynthetic gene clusters (BGCs) can often be identified within DNA sequences by various sequence similarity tools, but determining the exact functions of genes in the pathway and predicting their chemical products can often only be done by careful, manual comparative analysis. To facilitate this, we report the first release of the secondary metabolism collaboratory (SMC), which aims to provide a comprehensive, tool-agnostic repository of BGC sequence data drawn from all publicly available and user-submitted bacterial and archaeal genome and contig sources.

View Article and Find Full Text PDF

OrthoDB and BUSCO update: annotation of orthologs with wider sampling of genomes.

Nucleic Acids Res

November 2024

Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland, and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland.

OrthoDB (https://www.orthodb.org) offers evolutionary and functional annotations of orthologous genes in the widest sampling of eukaryotes, prokaryotes, and viruses, extending experimental gene function knowledge to newly sequenced genomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!