In order to improve laser transmission efficiency at 1053 nm and 527 nm, a potassium deuterium phosphate (DKDP) crystal (a key component of high-power laser systems) needs a bi-layer antireflection coating system on its incident surface. UV-curable polysiloxane coatings with a refractive index varying from 1.500 to 1.485 were prepared through the polycondensation of a methacryloxy propyl trimethoxylsilane (MPS) monomer with a controllable degree of hydrolysis. Additionally, the influence rule of the coating structure on the refractive index was intensively studied, and the primary factors that dominate the hydrolysis process were discussed. Further refractive index adjustment was achieved using only a small amount of dopant based on the polysiloxane coating with refractive index of 1.485, allowing for high antireflection of the bi-layer coating system at desired wavelengths to be achieved. In addition, high laser damage resistance and remarkable mechanical properties of the coating were simultaneously realized through the incorporation of a minor quantity of dopants, which benefited from the successful modulation of the intrinsic refractive index of the polysiloxane coating.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343576 | PMC |
http://dx.doi.org/10.3390/nano13131985 | DOI Listing |
Polymers (Basel)
November 2024
A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia.
The requirement for the development of advanced technologies is the need to create new functional thermostable soluble polysilsesquioxanes. Combining the potential of organosilicon chemistry and the chemistry of heterocyclic compounds is a promising direction for the formation of novel organosilicon polymer systems with new properties and new possibilities for their practical application. Using the classical method of hydrolysis and polycondensation of previously unknown trifunctional (trimethoxysilylpropyl)glutarimide in the presence or absence of an acid or base catalyst, a universal approach to the formation of new thermostable soluble polysilsesquioxanes with glutarimide side-chain groups is proposed, which forms the basis for the synthesis of polysilsesquioxane polymers with different functionality.
View Article and Find Full Text PDFBiofouling
November 2024
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA.
Sci Adv
December 2024
Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China.
Hemostatic materials that can rapidly control bleeding without causing secondary damage or sharp pain upon removal are receiving increasing demands in acute trauma treatments and first-aid supplies. Here, we report the development of a dynamic silicone hydrogel coating on medical gauze to enable rapid hemostasis and synergistic anti-blood adhesion properties. The silicone hydrogel can spontaneously form oriented cross-linked structures on fibrous medical gauze through a solution-processing method to achieve macroscopic superhydrophobicity with microscopic surface slipperiness, resulting in excellent anti-blood adhesion with the on-wound peeling force at ~0 millinewton.
View Article and Find Full Text PDFPharm Res
December 2024
Pharmaceutical Sciences & Clinical Supply, Merck & Co., Inc., Rahway, NJ, 07065, USA.
Objective: Pre-filled syringes (PFSs) have become popular as a convenient and cost-effective container closure system for delivering biotherapeutics. However, standard siliconized PFSs may compromise the stability of therapeutic proteins due to their exposure to the silicone oil-water interface. To address this concern, silicone oil-free (SOF) glass syringes coupled with silicone-oil free plunger stoppers have been developed.
View Article and Find Full Text PDFLab Chip
December 2024
Department of Nano-Bio Mechanical System Engineering, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, Republic of Korea.
Microwell technology is crucial in biological applications due to its ability to handle small sample sizes and perform numerous assays efficiently. This study aimed to develop a novel technique for microwell fabrication using pressure-assisted steam technology, offering lower cost, simplicity, and high reproducibility. Mechanical properties of microwell surfaces were successfully controlled and characterized, making them suitable for DNA capture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!