In order to improve laser transmission efficiency at 1053 nm and 527 nm, a potassium deuterium phosphate (DKDP) crystal (a key component of high-power laser systems) needs a bi-layer antireflection coating system on its incident surface. UV-curable polysiloxane coatings with a refractive index varying from 1.500 to 1.485 were prepared through the polycondensation of a methacryloxy propyl trimethoxylsilane (MPS) monomer with a controllable degree of hydrolysis. Additionally, the influence rule of the coating structure on the refractive index was intensively studied, and the primary factors that dominate the hydrolysis process were discussed. Further refractive index adjustment was achieved using only a small amount of dopant based on the polysiloxane coating with refractive index of 1.485, allowing for high antireflection of the bi-layer coating system at desired wavelengths to be achieved. In addition, high laser damage resistance and remarkable mechanical properties of the coating were simultaneously realized through the incorporation of a minor quantity of dopants, which benefited from the successful modulation of the intrinsic refractive index of the polysiloxane coating.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343576PMC
http://dx.doi.org/10.3390/nano13131985DOI Listing

Publication Analysis

Top Keywords

polysiloxane coating
12
uv-curable polysiloxane
8
coating system
8
coating
7
refractive
6
fabrication uv-curable
4
polysiloxane
4
coating tunable
4
tunable refractive
4
refractive based
4

Similar Publications

The requirement for the development of advanced technologies is the need to create new functional thermostable soluble polysilsesquioxanes. Combining the potential of organosilicon chemistry and the chemistry of heterocyclic compounds is a promising direction for the formation of novel organosilicon polymer systems with new properties and new possibilities for their practical application. Using the classical method of hydrolysis and polycondensation of previously unknown trifunctional (trimethoxysilylpropyl)glutarimide in the presence or absence of an acid or base catalyst, a universal approach to the formation of new thermostable soluble polysilsesquioxanes with glutarimide side-chain groups is proposed, which forms the basis for the synthesis of polysilsesquioxane polymers with different functionality.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores the use of engineered micro-topographic surfaces, created from carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) nanocomposites, as a potential method for preventing fouling in applications.
  • The researchers focused on how manufacturing conditions, like roller speed and gap distance, influenced the surfaces' properties, finding that a smaller gap distance improved hydrophobicity.
  • The results demonstrated that the textured surfaces had up to a 35% reduction in diatom attachment compared to smooth non-textured surfaces, suggesting that surface roughness plays a key role in reducing biofouling.
View Article and Find Full Text PDF

Hemostatic materials that can rapidly control bleeding without causing secondary damage or sharp pain upon removal are receiving increasing demands in acute trauma treatments and first-aid supplies. Here, we report the development of a dynamic silicone hydrogel coating on medical gauze to enable rapid hemostasis and synergistic anti-blood adhesion properties. The silicone hydrogel can spontaneously form oriented cross-linked structures on fibrous medical gauze through a solution-processing method to achieve macroscopic superhydrophobicity with microscopic surface slipperiness, resulting in excellent anti-blood adhesion with the on-wound peeling force at ~0 millinewton.

View Article and Find Full Text PDF

Objective: Pre-filled syringes (PFSs) have become popular as a convenient and cost-effective container closure system for delivering biotherapeutics. However, standard siliconized PFSs may compromise the stability of therapeutic proteins due to their exposure to the silicone oil-water interface. To address this concern, silicone oil-free (SOF) glass syringes coupled with silicone-oil free plunger stoppers have been developed.

View Article and Find Full Text PDF

Controlled Au-coated PDMS microwell array for surface-enhanced DNA biochips.

Lab Chip

December 2024

Department of Nano-Bio Mechanical System Engineering, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, Republic of Korea.

Microwell technology is crucial in biological applications due to its ability to handle small sample sizes and perform numerous assays efficiently. This study aimed to develop a novel technique for microwell fabrication using pressure-assisted steam technology, offering lower cost, simplicity, and high reproducibility. Mechanical properties of microwell surfaces were successfully controlled and characterized, making them suitable for DNA capture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!