Polypyrimidine tract binding protein 1 (PTBP1) is one of the most well-described RNA binding proteins, known initially for its role as a splicing repressor before later studies revealed its numerous roles in RNA maturation, stability, and translation. While PTBP1's various biological roles have been well-described, it remains unclear how its four RNA recognition motif (RRM) domains coordinate these functions. The early PTBP1 literature saw extensive effort placed in detailing structures of each of PTBP1's RRMs, as well as their individual RNA sequence and structure preferences. However, limitations in high-throughput and high-resolution genomic approaches (i.e., next-generation sequencing had not yet been developed) precluded the functional translation of these findings into a mechanistic understanding of each RRM's contribution to overall PTBP1 function. With the emergence of new technologies, it is now feasible to begin elucidating the individual contributions of each RRM to PTBP1 biological functions. Here, we review all the known literature describing the apo and RNA bound structures of each of PTBP1's RRMs, as well as the emerging literature describing the dependence of specific RNA processing events on individual RRM domains. Our goal is to provide a framework of the structure-function context upon which to facilitate the interpretation of future studies interrogating the dynamics of PTBP1 function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342978PMC
http://dx.doi.org/10.3390/ijms241311218DOI Listing

Publication Analysis

Top Keywords

rrm domains
8
structures ptbp1's
8
ptbp1's rrms
8
rrms well
8
ptbp1 function
8
literature describing
8
ptbp1
6
rna
6
reviewing ptbp1
4
ptbp1 domain
4

Similar Publications

Deciphering the interactome of Ataxin-2 and TDP-43 in iPSC-derived neurons for potential ALS targets.

PLoS One

December 2024

Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America.

Ataxin-2 is a protein containing a polyQ extension and intermediate length of polyQ extensions increases the risk of Amyotrophic Lateral Sclerosis (ALS). Down-regulation of Ataxin-2 has been shown to mitigate TDP-43 proteinopathy in ALS models. To identify alternative therapeutic targets that can mitigate TDP-43 toxicity, we examined the interaction between Ataxin-2 and TDP-43.

View Article and Find Full Text PDF

Challenges in Therapeutically Targeting the RNA-Recognition Motif.

Wiley Interdiscip Rev RNA

December 2024

Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology, Dortmund, Germany.

The RNA recognition motif (RRM) is the most common RNA binding domain found in the human proteome. RRM domains provide RNA-binding proteins with sequence specific RNA recognition allowing them to participate in RNA-centric processes such as mRNA maturation, translation initiation, splicing, and RNA degradation. They are drivers of various diseases through overexpression or mutation, making them attractive therapeutic targets and addressing these proteins through their RRM domains with chemical compounds is gaining ever more attention.

View Article and Find Full Text PDF

The entire RNA lifecycle, spanning from transcription to decay, is intricately regulated by RNA-binding proteins (RBPs). To understand their precise functions, it is crucial to identify direct targets, pinpoint their exact binding sites, and unravel the underlying specificity in vivo. Individual-nucleotide resolution UV crosslinking and immunoprecipitation 2 (iCLIP2) is a state-of-the-art technique that enables the identification of RBP binding sites at single-nucleotide resolution.

View Article and Find Full Text PDF

An Intrinsically Disordered RNA Binding Protein Modulates mRNA Translation and Storage.

J Mol Biol

November 2024

Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States. Electronic address:

Proteins with intrinsically disordered regions (IDR) play diverse functions in regulating gene expression in the cell. Many of these proteins interact with cytoplasmic ribosomes. However, the molecular functions related to the interactions are largely unclear.

View Article and Find Full Text PDF

Hydrogen-Deuterium Exchange Mass Spectrometry Reveals Mechanistic Insights into RNA Oligonucleotide-Mediated Inhibition of TDP-43 Aggregation.

J Am Chem Soc

December 2024

Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.

Deposits of aggregated TAR DNA-binding protein 43 (TDP-43) in the brain are associated with several neurodegenerative diseases. It is well established that binding of RNA/DNA to TDP-43 can prevent TDP-43 aggregation, but an understanding of the structure(s) and conformational dynamics of TDP-43, and TDP-43-RNA complexes, is lacking, including knowledge of how the solution environment modulates these properties. Here, we address this challenge using hydrogen-deuterium exchange-mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!