Conjugated Linoleic Acid-Mediated Connexin-43 Remodeling and Sudden Arrhythmic Death in Myocardial Infarction.

Int J Mol Sci

Department of Biochemistry and Molecular Genetics, Louisville, KY 40202, USA.

Published: July 2023

Connexin 43 (Cx43) is expressed in the left and right ventricles and is primarily responsible for conducting physiological responses in microvasculature. Studies have demonstrated that NADPH oxidase (NOX) enzymes are essential in cardiac redox biology and are responsible for the generation of reactive oxygen species (ROS). NOX2 is linked to left ventricular remodeling following myocardial infarction (MI). It was hypothesized that conjugated linoleic acid (cLA) treatment increases NOX-2 levels in heart tissue and disrupts connexins between the myocytes in the ventricle. Data herein demonstrate that cLA treatment significantly decreases survival in a murine model of MI. The observance of cLA-induced ventricular tachyarrhythmia's (VT) led to the subsequent investigation of the underlying mechanism in this MI model. Mice were treated with cLA for 12 h, 24 h, 48 h, or 72 h to determine possible time-dependent changes in NOX and Cx43 signaling pathways in isolated left ventricles (LV) extracted from cardiac tissue. The results suggest that ROS generation, through the stimulation of NOX2 in the LV, triggers a decrease in Cx43 levels, causing dysfunction of the gap junctions following treatment with cLA. This cascade of events may initiate VT and subsequent death during MI. Taken together, individuals at risk of MI should use caution regarding cLA consumption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342503PMC
http://dx.doi.org/10.3390/ijms241311208DOI Listing

Publication Analysis

Top Keywords

conjugated linoleic
8
myocardial infarction
8
left ventricles
8
cla treatment
8
cla
5
linoleic acid-mediated
4
acid-mediated connexin-43
4
connexin-43 remodeling
4
remodeling sudden
4
sudden arrhythmic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!