Influence of Inflammatory Pain and Dopamine on Synaptic Transmission in the Mouse ACC.

Int J Mol Sci

Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.

Published: July 2023

Dopamine (DA) inhibits excitatory synaptic transmission in the anterior cingulate cortex (ACC), a brain region involved in the sensory and affective processing of pain. However, the DA modulation of inhibitory synaptic transmission in the ACC and its alteration of the excitatory/inhibitory (E/I) balance remains relatively understudied. Using patch-clamp recordings, we demonstrate that neither DA applied directly to the tissue slice nor complete Freund's adjuvant (CFA) injected into the hind paw significantly impacted excitatory currents (eEPSCs) in the ACC, when recorded without pharmacological isolation. However, individual neurons exhibited varied responses to DA, with some showing inhibition, potentiation, or no response. The degree of eEPSC inhibition by DA was higher in naïve slices compared to that in the CFA condition. The baseline inhibitory currents (eIPSCs) were greater in the CFA-treated slices, and DA specifically inhibited eIPSCs in the CFA-treated, but not naïve group. DA and CFA treatment did not alter the balance between excitatory and inhibitory currents. Spontaneous synaptic activity revealed that DA reduced the frequency of the excitatory currents in CFA-treated mice and decreased the amplitude of the inhibitory currents, specifically in CFA-treated mice. However, the overall synaptic drive remained similar between the naïve and CFA-treated mice. Additionally, GABAergic currents were pharmacologically isolated and found to be robustly inhibited by DA through postsynaptic D2 receptors and G-protein activity. Overall, the study suggests that CFA-induced inflammation and DA do not significantly affect the balance between excitatory and inhibitory currents in ACC neurons, but activity-dependent changes may be observed in the DA modulation of presynaptic glutamate release in the presence of inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342013PMC
http://dx.doi.org/10.3390/ijms241311113DOI Listing

Publication Analysis

Top Keywords

inhibitory currents
16
synaptic transmission
12
cfa-treated mice
12
excitatory currents
8
balance excitatory
8
excitatory inhibitory
8
currents cfa-treated
8
currents
7
synaptic
5
acc
5

Similar Publications

In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.

View Article and Find Full Text PDF

5β-hydroxycostic acid from Laggera alata ameliorates sepsis-associated acute kidney injury through its anti-inflammatory and anti-ferroptosis effects via NF-κB and MAPK pathways.

J Ethnopharmacol

January 2025

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China. Electronic address:

Ethnopharmacological Relevance: The whole plant of Laggera alata is frequently utilize to remedy inflammatory diseases including nephritis as a traditional Chinese medicine. However, its active ingredients and mechanism of action against sepsis-associated acute kidney injury (SA-AKI) are unknown.

Aim Of The Study: This study aimed to identify active compounds from L.

View Article and Find Full Text PDF

A lipidated peptide derived from the C-terminal tail of the vasopressin 2 receptor shows promise as a new β-arrestin inhibitor.

Pharmacol Res

January 2025

Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada; RECITAL International Partnership Lab, Université de Caen-Normandie, Caen, France & Université de Sherbrooke, Sherbrooke, QC, Canada. Electronic address:

β-arrestins play pivotal roles in seven transmembrane receptor (7TMR) signalling and trafficking. To study their functional role in regulating specific receptor systems, current research relies mainly on genetic tools, as few pharmacological options are available. To address this issue, we designed and synthesised a novel lipidated phosphomimetic peptide inhibitor targeting β-arrestins, called ARIP, which was developed based on the C-terminal tail (A343-S371) of the vasopressin V2 receptor.

View Article and Find Full Text PDF

Background: Early intervention in hepatic fibrosis (HF) is critical to reducing the risk of cirrhosis-related mortality and hepatocellular cancer. However, treating fibrosis has proven to be more challenging, with no approved anti-fibrotic therapies currently available for HF. Traditional Chinese medicines (TCMs) hold significant potential for the management of HF.

View Article and Find Full Text PDF

Preliminary Evidence for Perturbation-Based tACS-EEG Biomarkers of Gamma Activity in Alzheimer's Disease.

Int J Geriatr Psychiatry

January 2025

Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Background: Alzheimer's disease (AD) is characterized by impaired inhibitory circuitry and GABAergic dysfunction, which is associated with reduced fast brain oscillations in the gamma band (γ, 30-90 Hz) in several animal models. Investigating such activity in human patients could lead to the identification of novel biomarkers of diagnostic and prognostic value. The current study aimed to test a multimodal "Perturbation-based" transcranial Alternating Current Stimulation-Electroencephalography (tACS)-EEG protocol to detect how responses to tACS in AD patients correlate with patients' clinical phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!