All the cells of an organism contain the same genome. However, each cell expresses only a minor fraction of its potential and, in particular, the genes encoding the proteins necessary for basal metabolism and the proteins responsible for its specific phenotype. The ability to use only the right and necessary genes involved in specific functions depends on the structural organization of the nuclear chromatin, which in turn depends on the epigenetic history of each cell, which is stored in the form of a collection of DNA and protein modifications. Among these modifications, DNA methylation and many kinds of post-translational modifications of histones play a key role in organizing the complex indexing of usable genes. In addition, non-canonical histone proteins (also known as histone variants), the synthesis of which is not directly linked with DNA replication, are used to mark specific regions of the genome. Here, we will discuss the role of the H3.3 histone variant, with particular attention to its loading into chromatin in the mammalian nervous system, both in physiological and pathological conditions. Indeed, chromatin modifications that mark cell memory seem to be of special importance for the cells involved in the complex processes of learning and memory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342106 | PMC |
http://dx.doi.org/10.3390/ijms241311028 | DOI Listing |
Nat Cardiovasc Res
January 2025
Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
Atherosclerotic lesions develop preferentially in arterial regions exposed to disturbed blood flow, where endothelial cells acquire an inflammatory phenotype. How disturbed flow induces endothelial cell inflammation is incompletely understood. Here we show that histone H3.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2019
School of Medical Sciences (Pharmacology), The University of Sydney, New South Wales 2006, Australia. Electronic address:
Hydroxamic acid compounds 1-10 containing a N-hydroxycinnamamide scaffold and a 4-(benzylamino)methyl cap group that was either unsubstituted (1) or substituted with one (2-4) or two (5-10) methoxy groups in variable positions were prepared as inhibitors of Zn(II)-containing histone deacetylases (HDACs). The 3,4- (9) and 3,5- (10) bis-methoxy-substituted compounds were the least potent against HeLa nuclear extract, HDAC1 and HDAC2. Molecular modelling showed methoxy groups in the 3-, 4- and 5-position, but not the 2-position, had unfavourable steric interactions with the G32-H33-P34 triad on a loop at the surface of the HDAC2 active site cavity.
View Article and Find Full Text PDFMol Cell Biochem
November 1984
The pattern of subtypes of the nucleosomal histones and of histone H1 was investigated in human cells from adult and fetal lung and liver, from carcinoma tissues and from carcinoma-derived cell lines, with the object of comparing these patterns, and their relationship to cell growth rate, with those in cells of other species. The subtype pattern of the nucleosomal histones H2A and H3 shows a correlation with replication rate. In adult tissues, subtype H3-3 predominates over H3-2 and H3-1, and the subtype H2A-1 and H2A-2 are approximately equally abundant.
View Article and Find Full Text PDFDuring vegetative growth, micronuclei of the ciliated protozoan Tetrahymena thermophila contain two electrophoretically distinct forms of H3, H3S and H3F [4, 5]. Of these two forms, H3F is unique to micronuclear chromatin and is derived from H3S by a physiologically regulated proteolytic processing event [5]. While the function of this processing event is not clear, several lines of evidence [2, 5] suggest that it may be related to chromatin condensation during mitosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!