Physiologic insulin secretion consists of an oscillating pattern of secretion followed by distinct trough periods that stimulate ligand and receptor activation. Apart from the large postprandial bolus release of insulin, β cells also secrete small amounts of insulin every 4-8 min independent of a meal. Insulin resistance is associated with a disruption in the normal cyclical pattern of insulin secretion. In the case of type-2 diabetes, β-cell mass is reduced due to apoptosis and β cells secrete insulin asynchronously. When ligand/receptors are constantly exposed to insulin, a negative feedback loop down regulates insulin receptor availability to insulin, creating a relative hyperinsulinemia. The relative excess of insulin leads to insulin resistance (IR) due to decreased receptor availability. Over time, progressive insulin resistance compromises carbohydrate metabolism, and may progress to type-2 diabetes (T2D). In this review, we discuss insulin resistance pathophysiology and the use of dynamic exogenous insulin administration in a manner consistent with more normal insulin secretion periodicity to reverse insulin resistance. Administration of insulin in such a physiologic manner appears to improve insulin sensitivity, lower HgbA1c, and, in some instances, has been associated with the reversal of end-organ damage that leads to complications of diabetes. This review outlines the rationale for how the physiologic secretion of insulin orchestrates glucose metabolism, and how mimicking this secretion profile may serve to improve glycemic control, reduce cellular inflammation, and potentially improve outcomes in patients with diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341609PMC
http://dx.doi.org/10.3390/ijms241310927DOI Listing

Publication Analysis

Top Keywords

insulin resistance
24
insulin
21
insulin secretion
12
resistance pathophysiology
8
physiologic insulin
8
cells secrete
8
type-2 diabetes
8
receptor availability
8
resistance
6
secretion
6

Similar Publications

Purpose Of Review: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease, characterized by hepatic steatosis with at least one cardiometabolic risk factor. Patients with MASLD are at increased risk for the occurrence of cardiovascular events. Within this review article, we aimed to provide an update on the pathophysiology of MASLD, its interplay with cardiovascular disease, and current treatment strategies.

View Article and Find Full Text PDF

Pro-Arg, The Potential Anti-Diabetes Peptide, Screened from Almond by In-Silico Analysis.

Plant Foods Hum Nutr

January 2025

College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.

Insulin resistance was considered to be the most important clinical phenotype of type 2 diabetes (T2DM). Almond is a widely-consumed nut and long-term intake was beneficial to alleviating insulin resistance in patients with T2DM. Hence, screening of anti-diabetic peptides from almond proteins was feasible based on the effectiveness of peptides in the treatment of T2DM.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

This study examines remaining life expectancy (RLE) after a cancer diagnosis, focusing on age, sex, cancer type, and metabolic syndrome (MS) components, using data from the SIDIAP database in Catalonia (2006-2017). RLE was analyzed for 13 cancer types, stratified by sex and MS components. The cohort study includes 183,364 individuals followed from diagnosis until death, transfer, or study end (December 2017).

View Article and Find Full Text PDF

Metabolic syndrome and its effect on immune cells in apical periodontitis- a narrative review.

Clin Oral Investig

January 2025

Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada.

Objectives: Apical periodontitis (AP) is an inflammatory immune response in periapical tissues caused by microbial infections. Failure of root canal treatment or delayed healing is often due to intracanal or extra-radicular bacteria. However, beyond microbial factors, the patient's systemic health can significantly influence the progression and healing of AP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!