Chemoattractant cytokines or chemokines are proteins involved in numerous biological activities. Their essential role consists of the formation of gradient and (immune) cell recruitment. Chemokine biology and its related signaling system is more complex than simple ligand-receptor interactions. Beside interactions with their cognate and/or atypical chemokine receptors, and glycosaminoglycans (GAGs), chemokines form complexes with themselves as homo-oligomers, heteromers and also with other soluble effector proteins, including the atypical chemokine MIF, carbohydrate-binding proteins (galectins), damage-associated molecular patterns (DAMPs) or with chemokine-binding proteins such as evasins. Likewise, nucleic acids have been described as binding targets for the tetrameric form of CXCL4. The dynamic balance between monomeric and dimeric structures, as well as interactions with GAGs, modulate the concentrations of free chemokines available along with the nature of the gradient. Dimerization of chemokines changes the canonical monomeric fold into two main dimeric structures, namely CC- and CXC-type dimers. Recent studies highlighted that chemokine dimer formation is a frequent event that could occur under pathophysiological conditions. The structural changes dictated by chemokine dimerization confer additional biological activities, e.g., biased signaling. The present review will provide a short overview of the known functionality of chemokines together with the consequences of the interactions engaged by the chemokines with other proteins. Finally, we will present potential therapeutic tools targeting the chemokine multimeric structures that could modulate their biological functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341610PMC
http://dx.doi.org/10.3390/ijms241310925DOI Listing

Publication Analysis

Top Keywords

chemokines proteins
8
biological activities
8
atypical chemokine
8
dimeric structures
8
chemokine
7
chemokines
6
proteins
5
chemokine heteromers
4
heteromers impact
4
impact cellular
4

Similar Publications

Ribosomal proteins mediate non-canonical regulation of gut inflammatory signature by crop contaminant deoxynivalenol.

Ecotoxicol Environ Saf

January 2025

Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea; Biomedical Research Institute, Pusan National University, Busan, Republic of Korea; Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan,  Republic of Korea; Program of Total Foodtech and PNU-Korea Maritime Institute (KMI) Collaborative Research Center, Busan, Republic of Korea. Electronic address:

Deoxynivalenol (DON), a prevalent mycotoxin produced by Fusarium species, contaminates global agricultural products and poses significant health risks, particularly to the gastrointestinal (GI) system. DON exposure disrupts ribosomal function, inducing stress responses linked to various inflammatory diseases, including inflammatory bowel disease (IBD). In this study, we elucidate a novel regulatory mechanism involving ribosomal proteins (RPs) RPL13A and RPS3, which mediate proinflammatory chemokine production in DON-exposed gut epithelial cells.

View Article and Find Full Text PDF

Regulation of macrophage polarization by metformin through inhibition of TLR4/NF-κB pathway to improve pre-eclampsia.

Placenta

January 2025

Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311200, China. Electronic address:

Introduction: Pre-eclampsia (PE) is a pregnancy complication featuring hypertension and proteinuria. Metformin exerts clinically preventive effects on PE with an unspecified mechanism.

Methods: Placental tissues from PE patients and normal pregnant (NP) women were collected.

View Article and Find Full Text PDF

Background: While most thyroid nodules are benign, 7-15% are malignant. Patients with indeterminate thyroid nodules (specifically Bethesda IV/Thy3f) often undergo diagnostic hemithyroidectomy to reach a diagnosis on final histology. The aim of this study was to assess the feasibility of circulating large extracellular vesicles as diagnostic biomarkers in patients presenting with Thy3f thyroid nodules.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.

Background: Cerebrospinal fluid (CSF) proteomics allows for characterization of multiple disease-related biological processes in vivo. These processes likely occur along temporal cascades mirroring disease evolution. This study describes interindividual variation in these cascades, in the context of Alzheimer's disease.

View Article and Find Full Text PDF

Background: Recent evidence suggests extensive myelin dysfunction in Alzheimer's Disease (AD), lending to investigation of biomarkers previously implicated in both AD and Multiple Sclerosis (MS) to find objective and obtainable diagnostic screening tools. Glial fibrillary acidic protein (GFAP), Chitinase-3-like protein 1 (CHI3L1), Chemokine (C-X-C motif) ligand 13 (CXCL13), and neurofilament light chain (Nfl) have been known to mark neuronal pathology in both diseases making them attractive markers. Retinal Optical Coherence Tomography (OCT) becomes a popular diagnostic tool in both conditions as an inexpensive and rapid way of obtaining a window into the cerebrum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!