Clinically relevant disease-causing variants of the human dihydrolipoamide dehydrogenase (hLADH, hE3), a common component of the mitochondrial α-keto acid dehydrogenase complexes, were characterized using a multipronged approach to unravel the molecular pathomechanisms that underlie hLADH deficiency. The G101del and M326V substitutions both reduced the protein stability and triggered the disassembly of the functional/obligate hLADH homodimer and significant FAD losses, which altogether eventually manifested in a virtually undetectable catalytic activity in both cases. The I12T-hLADH variant proved also to be quite unstable, but managed to retain the dimeric enzyme form; the LADH activity, both in the and catalytic directions and the affinity for the prosthetic group FAD were both significantly compromised. None of the above three variants lent themselves to an in-depth structural analysis via X-ray crystallography due to inherent protein instability. Crystal structures at 2.89 and 2.44 Å resolutions were determined for the I318T- and I358T-hLADH variants, respectively; structure analysis revealed minor conformational perturbations, which correlated well with the residual LADH activities, in both cases. For the dimer interface variants G426E-, I445M-, and R447G-hLADH, enzyme activities and FAD loss were determined and compared against the previously published structural data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341545PMC
http://dx.doi.org/10.3390/ijms241310826DOI Listing

Publication Analysis

Top Keywords

human dihydrolipoamide
8
dihydrolipoamide dehydrogenase
8
structural biochemical
4
biochemical investigation
4
investigation selected
4
selected pathogenic
4
pathogenic mutants
4
mutants human
4
dehydrogenase clinically
4
clinically relevant
4

Similar Publications

The aim of this study was to analyze dihydrolipoyllysine-residue acetyltransferase (DLAT) expression and diagnostic ability in hepatocellular carcinoma (HCC), assess its role in HCC growth, and factors affecting it. We conducted bioinformatics analyses, examined DLAT expression and prognosis in pre-cancer, and performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment studies while investigating its correlation with immunity. We also predicted regulatory factors, and detected DLAT in HCC cells using quantitative PCR (qPCR) and Western blotting, and in patient serum via enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

The Triple-Negative Breast Cancer (TNBC) subtype constitutes 15-20% of breast cancer cases and is associated with the poorest clinical outcomes. Distant metastasis, particularly to the lungs, is a major contributor to the high mortality rates in breast cancer patients. Despite this, there has been a lack of comprehensive insights into the heterogeneity of metastatic tumors and their surrounding ecosystem in the lungs.

View Article and Find Full Text PDF

Background: To reveal the clinical value of cuproptosis-related genes on prognosis and metastasis in non-small cell lung cancer.

Methods: Gene expression profiles and clinical information of non-small cell lung cancer were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. The data were grouped into training set, internal testing set, and external testing set.

View Article and Find Full Text PDF
Article Synopsis
  • Dihydrolipoamide S-acetyltransferase (DLAT) is a critical subunit of the pyruvate dehydrogenase complex, influencing both glycolysis and the tricarboxylic acid cycle, but its role in tumor development is not fully understood.
  • The study utilized various computational methods to analyze DLAT's expression, genetic variations, immune interactions, and responses to treatment across different cancers, particularly focusing on glioma cells.
  • Results showed that increased DLAT expression is linked to poor patient survival, affects immune cell dynamics, and contributes to tumor cell resilience against treatments, making it a potential biomarker for diagnosis and immunotherapy in cancer.
View Article and Find Full Text PDF

Objectives: To explore the enhanced sensitization effect of peritumoral electroacupuncture (PEA) on doxorubicin (DOX) chemotherapy in mice with triple-negative breast cancer (TNBC).

Methods: Eighteen female Balb/c mice were randomly divided into the model, DOX, and EA+DOX groups, with 6 mice in each group. TNBC cells were injected into the mammary fat pad of mice to establish the breast cancer-bearing mice model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!