Neurodegenerative diseases are, according to recent studies, one of the main causes of disability and death worldwide. Interest in molecular genetics has started to experience exponential growth thanks to numerous advancements in technology, shifts in the understanding of the disease as a phenomenon, and the change in the perspective regarding gene editing and the advantages of this action. The aim of this paper is to analyze the newest approaches in genetics and molecular sciences regarding four of the most important neurodegenerative disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. We intend through this review to focus on the newest treatment, diagnosis, and predictions regarding this large group of diseases, in order to obtain a more accurate analysis and to identify the emerging signs that could lead to a better outcome in order to increase both the quality and the life span of the patient. Moreover, this review could provide evidence of future possible novel therapies that target the specific genes and that could be useful to be taken into consideration when the classical approaches fail to shed light.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341997PMC
http://dx.doi.org/10.3390/ijms241310809DOI Listing

Publication Analysis

Top Keywords

neurodegenerative diseases
8
amyotrophic lateral
8
lateral sclerosis
8
unraveling molecular
4
molecular genetic
4
genetic insights
4
insights neurodegenerative
4
diseases
4
diseases advances
4
advances understanding
4

Similar Publications

The present study investigated the neuromodulatory substrates of salience processing and its impact on memory encoding and behaviour, with a specific focus on two distinct types of salience: reward and contextual unexpectedness. 46 Participants performed a novel task paradigm modulating these two aspects independently and allowing for investigating their distinct and interactive effects on memory encoding while undergoing high-resolution fMRI. By using advanced image processing techniques tailored to examine midbrain and brainstem nuclei with high precision, our study additionally aimed to elucidate differential activation patterns in subcortical nuclei in response to reward-associated and contextually unexpected stimuli, including distinct pathways involving in particular dopaminergic modulation.

View Article and Find Full Text PDF

Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects.

View Article and Find Full Text PDF

Introduction: Traditional extraocular electrical stimulation typically produces diffuse electric fields across the retina, limiting the precision of targeted therapy. Temporally interfering (TI) electrical stimulation, an emerging approach, can generate convergent electric fields, providing advantages for targeted treatment of various eye conditions.

Objective: Understanding how detailed structures of the retina, especially the optic nerve, affects electric fields can enhance the application of TI approach in retinal neurodegenerative and vascular diseases, an essential aspect that has been frequently neglected in previous researches.

View Article and Find Full Text PDF

Mucopolysaccharidosis type I (MPS I) is a metabolic disorder characterized by a deficiency in α-l-iduronidase (IDUA), leading to impaired glycosaminoglycan degradation. Current approved treatments seek to restore IDUA levels via enzyme replacement therapy (ERT) and/or hematopoietic stem cell transplantation (HSCT). The effectiveness of these treatment strategies in preventing neurodegeneration is limited due to the inability of ERT to penetrate the blood-brain barrier (BBB) and HSCT's limited CNS reconstitution of IDUA levels.

View Article and Find Full Text PDF

As a key inflammatory factor, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation and the progression of neurodegenerative diseases. Dysregulation of NLRP3 signaling can trigger various inflammatory responses in the brain, contributing to the development of neurodegenerative diseases such as ischemic stroke, vascular dementia (VaD), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Therefore, the NLRP3 signaling pathway is a promising therapeutic target for the treatment of neurodegenerative diseases, including VaD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!