One of the central goals of evolutionary biology is to understand the genomic basis of adaptive divergence. Different aspects of evolutionary processes should be studied through genome-wide approaches, therefore maximizing the investigated genomic space. However, in-depth genome-scale analyses often are restricted to a model or economically important species and their closely related wild congeners with available reference genomes. Here, we present the high-quality chromosome-level genome assembly of , a plant species with exceptional ecological plasticity. By combining PacBio and Hi-C sequencing technologies, we generated a 3.7 Gbp genome with a scaffold N50 size of 210 Mbp. Over 80% of the genome comprised repetitive elements, among which the LTR retrotransposons prevailed. Approximately 86% of the 27,257 predicted genes were functionally annotated using public databases. For the comparative analysis of different ecotypes' genomes, the whole-genome sequencing of two individuals, each from a distinct ecotype, was performed. The detected above-average SNP density within coding regions suggests increased adaptive divergence-related mutation rates, therefore confirming the assumed divergence processes within the group. The constructed genome presents an invaluable resource for future research activities oriented toward the investigation of the genetics underlying the adaptive divergence that is likely unfolding among the studied species' ecotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341473PMC
http://dx.doi.org/10.3390/ijms241310755DOI Listing

Publication Analysis

Top Keywords

adaptive divergence
12
species exceptional
8
exceptional ecological
8
ecological plasticity
8
genome assembly
8
genome
5
investigation adaptive
4
divergence
4
divergence species
4
plasticity chromosome-scale
4

Similar Publications

Background: In holobiont, microbiota is known to play a central role on the health and immunity of its host. Then, understanding the microbiota, its dynamic according to the environmental conditions and its link to the immunity would help to react to potential dysbiosis of aquacultured species. While the gut microbiota is highly studied, in marine invertebrates the hemolymph microbiota is often set aside even if it remains an important actor of the hemolymph homeostasis.

View Article and Find Full Text PDF

Background And Aims: The cosmopolitan Botrychium lunaria group belong to the most species rich genus of the family Ophioglossaceae and was considered to consist of two species until molecular studies in North America and northern Europe led to the recognition of multiple new taxa. Recently, additional genetic lineages were found scattered in Europe, emphasizing our poor understanding of the global diversity of the B. lunaria group, while the processes involved in the diversification of the group remain unexplored.

View Article and Find Full Text PDF

Genome-Wide Analysis of the Hsf Gene Family in and Function in Thermotolerance.

Int J Mol Sci

December 2024

Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China.

Heat shock transcription factors (Hsfs) play an important role in response to high temperatures by binding to the promoter of the heat shock protein gene to promote its expression. As an important ornamental plant, the rose often encounters heat stress during the flowering process. However, there are few studies on the family in roses ().

View Article and Find Full Text PDF

Heat stress transcription factors (HSFs) play a critical role in orchestrating cellular responses to elevated temperatures and various stress conditions. While extensively studied in model plants, the gene family in remains unexplored, despite the availability of its sequenced genome. In this study, we employed bioinformatics approaches to identify 21 genes within the genome, revealing their uneven distribution across chromosomes.

View Article and Find Full Text PDF

Unveiling the Genetic Diversity and Demographic History of in Sierra Leone Using Genotyping-By-Sequencing.

Plants (Basel)

December 2024

Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD 2005, USA.

is a rare Coffea species boasting a flavor profile comparable to Arabica coffee () and has a good adaptability to lowland tropical climates. This species faces increasing threats from climate change, deforestation, and habitat fragmentation in its West African homeland. Using 1037 novel SNP markers derived from Genotyping-by-Sequencing (GBS), we revealed the presence of three distinct natural populations (mean Fst = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!