The liver is the body's largest gland, and regulates a wide variety of physiological processes. The work of the liver can be disrupted in a variety of pathologies, the number of which is several hundred. It is extremely important to monitor the health of the liver and develop approaches to combat liver diseases. In recent decades, nanomedicine has become increasingly popular in the treatment of various liver pathologies, in which nanosized biomaterials, which are inorganic, polymeric, liposomal, albumin, and other nanoparticles, play an important role. Given the need to develop environmentally safe, inexpensive, simple, and high-performance biomedical agents for theragnostic purposes and showing few side effects, special attention is being paid to nanoparticles based on the important trace element selenium (Se). It is known that the metabolism of the microelement Se occurs in the liver, and its deficiency leads to the development of several serious diseases in this organ. In addition, the liver is the depot for most selenoproteins, which can reduce oxidative stress, inhibit tumor growth, and prevent other liver damage. This review is devoted to the description of the results of recent years, revealing the important role of selenium nanoparticles in the therapy and diagnosis of several liver pathologies, depending on the dose and physicochemical properties. The possibilities of selenium nanoparticles in the treatment of liver diseases, disclosed in the review, will not only reveal the advantages of their hepatoprotective properties but also significantly supplement the data on the role of the trace element selenium in the regulation of these diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341905PMC
http://dx.doi.org/10.3390/ijms241310547DOI Listing

Publication Analysis

Top Keywords

selenium nanoparticles
12
treatment liver
12
liver pathologies
12
liver
11
role selenium
8
nanoparticles treatment
8
liver diseases
8
trace element
8
element selenium
8
nanoparticles
5

Similar Publications

Chronic consequences of diabetes that are most commonly encountered are diabetic foot ulcers (DFUs), driven by microbiota-immune system dyshomeostasis, eventually leading to delayed wound healing. Available therapies, such as systemic or topical administration of anti-inflammatory or antimicrobial agents, are limited due to antibiotic resistance and immune dysfunction. Herein, a hybrid hydrogel dressing is developed as the artificial bioadhesive barrier at wound sites to maintain microbial and immunological homeostasis locally and have potent anti-inflammatory effects.

View Article and Find Full Text PDF

Chondroitin sulfate (CS), a class of glycosaminoglycans covalently attached to proteins to form proteoglycans, is widely distributed in the extracellular matrix and cell surface of animal tissues. In our previous study, CS was used as a template for the synthesis of seleno-chondroitin sulfate (SeCS) through the redox reaction of ascorbic acid (Vc) and sodium selenite (NaSeO) and we found that SeCS could inhibit tumor cell proliferation and invasion. However, its effect on angiogenesis and its underlying mechanism are unknown.

View Article and Find Full Text PDF

Here, a high molecular weight polysaccharide preparation from Ophiocordyceps gracilis was utilized as a stabilizer and dispersant to create nanocomposites based on selenium nanoparticles (GSP-1a-SeNPs). The NPs showed the highest stability at a selenium/polysaccharide mass ratio of 1:1, with no significant change after 28 days of storage at 4 °C. The NPs exhibited a symmetrical spheroid structure with an average diameter of 85.

View Article and Find Full Text PDF

Oxidative stress and inflammatory dysregulation play crucial roles in pathogenesis of acute lung injury (ALI), and their cyclic synergy drives excessive inflammatory responses and further exacerbates ALI. Therefore, new effective strategies to treat ALI are urgently needed. Herein, a novel synergistic selenium based chlorogenic acid nanoparticle was developed to disrupt the cyclic synergistic effect between oxidative stress and inflammatory response in ALI.

View Article and Find Full Text PDF

Biological semi-passive mine water treatment technologies are used in the mining industry as an alternative to or in conjunction with active treatment systems to remediate mine impacted water (MIW) containing nitrate and selenium oxyanions such as selenate and selenite. In semi-passive biological treatment systems, MIW is pumped through a saturated, porous media (either a gravel bed or waste rock) which provides ample surface area for biofilm growth and the creation of anoxic, subaqueous environments. Additional nutrients and carbon sources are pumped into the system to encourage the growth of microbes that biochemically reduce selenate and selenite to insoluble reduced Se species such as selenium nanoparticles (SeNP) by respiring selenate and selenite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!