Another technique for desalination, known as membrane capacitive deionization (MCDI), has been investigated as an alternative. This approach has the potential to lower the voltage that is required, in addition to improving the ability to renew the electrodes. In this study, the desalination effectiveness of capacitive deionization (CDI) was compared to that of MCDI, employing newly produced cellulose acetate ion exchange membranes (IEMs), which were utilized for the very first time in MCDI. As expected, the salt adsorption and charge efficiency of MCDI were shown to be higher than those of CDI. Despite this, the unique electrosorption behavior of the former reveals that ion transport via the IEMs is a crucial rate-controlling step in the desalination process. We monitored the concentration of salt in the CDI and MCDI effluent streams, but we also evaluated the pH of the effluent stream in each of these systems and investigated the factors that may have caused these shifts. The significant change in pH that takes place during one adsorption and desorption cycle in CDI (pH range: 2.3-11.6) may cause problems in feed water that already contains components that are prone to scaling. In the case of MCDI, the fall in pH was only slightly more noticeable. Based on these findings, it appears that CDI and MCDI are promising new desalination techniques that has the potential to be more ecologically friendly and efficient than conventional methods of desalination. MCDI has some advantages over CDI in its higher salt removal efficiency, faster regeneration, and longer lifetime, but it is also more expensive and complex. The best choice for a particular application will depend on the specific requirements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343577 | PMC |
http://dx.doi.org/10.3390/ma16134872 | DOI Listing |
ChemSusChem
January 2025
Kashi University, Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences;Xinjiang Key Laboratory of Engineering Materials and Structural Safety,School of Civil Engineering, CHINA.
Capacitive deionization (CDI) is a novel, cost-effective and environmentally friendly desalination technology that has garnered significant attention in recent years. Carbon materials, owing to their excellent properties, have become the preferred electrode materials for CDI. Given the significant differences between different ions, ion-selective performance has emerged as a critical aspect of CDI applications.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea.
Membrane capacitive deionization (MCDI) is an electrochemical ion separation process that combines ion-exchange membranes (IEMs) with porous carbon electrodes to enhance desalination efficiency and address the limitations of conventional capacitive deionization (CDI). In this study, a cation-exchange membrane (CEM) embedded with a metal-organic framework (MOF) was developed to effectively separate monovalent and multivalent cations in influent solutions via MCDI. To fabricate CEMs with high monovalent ion selectivity, ZIF-8 was incorporated into sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) at various weight ratios.
View Article and Find Full Text PDFACS Environ Au
January 2025
Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
The global transition to clean energy technologies has escalated the demand for lithium (Li), a critical component in rechargeable Li-ion batteries, highlighting the urgent need for efficient and sustainable Li extraction methods. Nanofiltration (NF)-based separations have emerged as a promising solution, offering selective separation capabilities that could advance resource extraction and recovery. However, an NF-based lithium extraction process differs significantly from conventional water treatment, necessitating a paradigm shift in membrane materials design, performance evaluation metrics, and process optimization.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fujian University of Technology, College of Ecological Environment and Urban Construction, 69, Xuefu South Road, Fuzhou 350118, China, 350118, Fuzhou, CHINA.
Rational exploration of cost-effective, durable, and high-performance electrode materials is imperative for advancing the progress of capacitive deionization (CDI). The integration of multicomponent layered double hydroxides (LDHs) with conjugated conductive metal-organic frameworks (c-MOFs) to fabricate bifunctional heterostructure electrode materials is considered a promising strategy. Herein, the fabrication of hierarchical conductive MOF/LDH/CF nanoarchitectures (M-CAT/LDH/CF) as CDI anodes via a controllable grafted-growth strategy is reported.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, PR China. Electronic address:
A sustainable supply of lithium from salt-lake brines is necessary due to the surge in demand of the lithium-battery market. However, the presence of coexisting ions, particularly Na, poses a significant challenge due to the similarities in charge, electronic structure, and hydrated size. The electrochemical system with manganese (Mn)-based lithium-ion (Li) sieves electrodes is a promising method for Li recovery, but often suffers from geometric configuration distortion, which reduces their selectivity and capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!