Austenitic stainless steel D9 is a candidate for Generation IV nuclear reactor structural materials due to its enhanced irradiation tolerance and high-temperature creep strength compared to conventional 300-series stainless steels. But, like other austenitic steels, D9 is susceptible to irradiation-induced clustering of Ni and Si, the mechanism for which is not well understood. This study utilizes atom probe tomography (APT) to characterize the chemistry and morphology of Ni-Si nanoclusters in D9 following neutron or proton irradiation to doses ranging from 5-9 displacements per atom (dpa) and temperatures ranging from 430-683 °C. Nanoclusters form only after neutron irradiation and exhibit classical coarsening with increasing dose and temperature. The nanoclusters have NiSi stoichiometry in a Ni core-Si shell structure. This core-shell structure provides insight into a potentially unique nucleation and growth mechanism-nanocluster cores may nucleate through local, spinodal-like compositional fluctuations in Ni, with subsequent growth driven by rapid Si diffusion. This study underscores how APT can shed light on an unusual irradiation-induced nanocluster nucleation mechanism active in the ubiquitous class of austenitic stainless steels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343310PMC
http://dx.doi.org/10.3390/ma16134852DOI Listing

Publication Analysis

Top Keywords

neutron proton
8
proton irradiation
8
austenitic stainless
8
stainless steels
8
nanocluster evolution
4
austenitic
4
evolution austenitic
4
austenitic steel
4
steel neutron
4
irradiation
4

Similar Publications

Advancing neutron imaging techniques to highest resolution with fluorescent nuclear track detectors.

Sci Rep

January 2025

High Energy Nuclear Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Saitama, 351-0198, Japan.

Neutron imaging is a nondestructive and noninvasive inspection technique with a wide range of potential applications. However, the fundamentals of this technique still need to be improved, one of which involves achieving micrometer scale or even better resolution, which is a challenging task. Recently, a high-resolution neutron imaging device based on fine-grained nuclear emulsions was developed.

View Article and Find Full Text PDF

Metal halide perovskite (MHP) solar cells are promising aerospace power sources given their potential as inexpensive, lightweight, and resilient solar electricity generators. Herein, the intrinsic radiation tolerance of unencapsulated methylammonium lead iodide/chloride (CHNHPbICl) films was isolated. Spatially resolved photoluminescence (PL) spectroscopy and confocal microscopy revealed the fundamental defect physics through optical changes as films were irradiated with 4.

View Article and Find Full Text PDF

Taurine prevents mitochondrial dysfunction and protects mitochondria from reactive oxygen species and deuterium toxicity.

Amino Acids

January 2025

Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Rio-Patras, Greece.

Taurine, although not a coding amino acid, is the most common free amino acid in the body. Taurine has multiple and complex functions in protecting mitochondria against oxidative-nitrosative stress. In this comprehensive review paper, we introduce a novel potential role for taurine in protecting from deuterium (heavy hydrogen) toxicity.

View Article and Find Full Text PDF

The shielding performance and activation susceptibility of a sandwich wall in the proton therapy facility of China Medical University Hospital were investigated in an integrated manner using FLUKA Monte Carlo simulations. The 2-m-thick partition wall between two adjoining treatment rooms had a three-layered structure, which comprised a 0.2-m-thick iron layer sandwiched between two layers of 0.

View Article and Find Full Text PDF

The spectral characteristics of cyclosporin C (CsC) with the addition of Dy ions in acetonitrile (CDCN) and CsC with Dy incorporated into dodecylphosphocholine (DPC) micelle in deuterated water were investigated by high-resolution NMR spectroscopy. The study was focused on the interaction between Dy ions and CsC molecules in different environments. Using a combination of one-dimensional and two-dimensional NMR techniques, we obtained information on the spatial features of the peptide molecule and the interaction between CsC and the metal ion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!