The influence of electrolyte velocity over the ion-exchange membrane surface on ion and vanadium redox batteries' conductivity was formalized and quantified. The increase in electrolyte velocity dramatically improves proton conductivity, resulting in improved battery efficiency. An analysis of conductivity was carried out using a math model considering diffusion and drift ion motion together with their mass transport. The model is represented by the system of partial differential together with algebraic equations describing the steady-state mode of dynamic behavior. The theoretical solution obtained was compared qualitatively with the experimental results that prove the correctness of the submitted math model describing the influence of the electrolyte flow on the resistance of the vanadium redox battery. The presented theoretical approach was employed to conduct a parametric analysis of flow batteries, aiming to estimate the impact of electrolyte velocity on the output characteristics of these batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343511 | PMC |
http://dx.doi.org/10.3390/ma16134845 | DOI Listing |
ChemSusChem
January 2025
Central South University, College of Chemistry and Chemical Engineering, No.932 South Lushan Road, Yuelu District, 410083, Changsha, CHINA.
The tightly connected structure of polybenzimidazole (PBI) membrane can be relaxed by solvent/nonsolvent solution to achieve a high proton conductivity for vanadium redox flow battery (VRFB). However, the nature behind the solvent/nonsolvent strategy is not unraveled. This work proposes a guideline to analyze the effect of PBI membrane relaxing formulas based on the interactions between different components in membranes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
MXenzymes, a promising class of catalytic therapeutic material, offer great potential for tumor treatment, but they encounter significant obstacles due to suboptimal catalytic efficiency and kinetics in the tumor microenvironment (TME). Herein, this study draws inspiration from the electronic structure of transition metal vanadium, proposing the leverage of TME specific-features to induce structural transformations in sheet-like vanadium carbide MXenzymes (TVMz). These transformations trigger cascading catalytic reactions that amplify oxidative stress, thereby significantly enhancing multimodal tumor therapy.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China. Electronic address:
Lignin, as the largest renewable aromatic resource, has significant opportunities for producing high-value products via catalytic depolymerization. However, its complex structure and stable chemical bonds present challenges to its transformation. This study explores the catalytic depolymerization of lignin to aromatic monomers by means of Dawson-type phosphomolybdovanadate polyoxometalates (POMs), understanding the underlying mechanisms.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Chemistry, University of Kurdistan, Sanandaj 66177-15175 Iran; Research Center for Nanotechnology, University of Kurdistan, Sanandaj 66177-15175 Iran. Electronic address:
The study focuses on the synthesis of VO microcubes for the non-enzymatic colorimetric determination of HO.Vanadium oxide nanostructures are known for their redox activity and layered structures, making VO a valuable material for sensing applications. The characterization of the prepared sample was done using XPS, XRD, Raman spectroscopy, and SEM techniques.
View Article and Find Full Text PDFPLoS One
January 2025
School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea.
The oxidation states of vanadium determine its mobility and toxicity, and dissimilatory vanadate reduction has been reported in several microorganisms, highlighting the potential significance of this pathway in the remediation of vanadium contamination and the biogeochemical cycle. However, to date, most known microorganisms capable of reducing vanadate are Gram-negative respiratory bacteria belonging to the phylum Proteobacteria. In this study, we isolated Tepidibacter mesophilus strain VROV1 from deep-sea sediments on the northern Central Indian Ridge and investigated its ability to reduce vanadium and the impact of vanadate on its cellular metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!