Properties of Red Mud Neutralized with Sulfuric Acid and Effects on Cement Mortar.

Materials (Basel)

COCHEMS Co., Ltd., Industrial Tools Circulating Center, 160, Daehwa-ro, Daedeok-gu, Daejeon 34368, Republic of Korea.

Published: June 2023

The purpose of this study was to recycle red mud, an industrial byproduct that generates 300,000 tons per year, into the construction industry. Red mud was prepared as a liquid, neutralized with sulfuric acid, and replaced with cement mortar. The properties of liquefied red mud (LRM) neutralized with sulfuric acid (LRM + S) were investigated as well as its effect on cement mortar's mechanical and hydration characteristics. The pH of LRM + S stabilized at 7.6; its SO content was ~4.19% higher than that of LRM. Sulfites were contributed by calcium and sodium sulfate. The flows and setting times of the mortars containing LRM and LRM + S decreased as the substitution rate increased. The compressive strength of mortar that replaced 5% of cement with LRM + S was similar to that of the plain cement mortar. Scanning electron microscopy and X-ray diffraction revealed that the hydration products of LRM + S-containing cement mortar were similar to those of the plain cement mortar. Thus, LRM + S can be used as a cement substitute.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342486PMC
http://dx.doi.org/10.3390/ma16134730DOI Listing

Publication Analysis

Top Keywords

cement mortar
20
red mud
16
neutralized sulfuric
12
sulfuric acid
12
lrm
9
cement
8
replaced cement
8
plain cement
8
mortar
6
properties red
4

Similar Publications

Sustainable application of waste gangue mortar in coal mine tunnel support.

Sci Rep

January 2025

School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an, 710048, China.

With the increase in coal mining depths, soft and fractured roadway surrounding rocks require grouting and a sprayed protective layer for maintenance. Simultaneously, extensive accumulation of coal gangue causes diverse environmental issues. To enhance on-site coal gangue utilization, this study replaced river sand and cement with coal gangue to develop a novel cement-based mortar for supporting coal mine roadways.

View Article and Find Full Text PDF

This study investigates the corrosion inhibition effects of eco-friendly conifer cone extract (CCE) on steel rebars embedded in cement mortar exposed to 3.5% NaCl under alternate wet/dry cycles. CCE concentrations of 0, 0.

View Article and Find Full Text PDF

Environmental impact of disposable face masks: degradation, wear, and cement mortar incorporation.

Environ Sci Pollut Res Int

January 2025

CERENA - Civil Engineering Research and Innovation for Sustainability, IST-ID, Av. António José de Almeida 12, 1049-001, Lisbon, Portugal.

Polypropylene (PP) disposable face masks (DFMs) are essential for limiting airborne infectious diseases. This study examines the behavior of DFMs under three scenarios: (i) exposure to the natural environment, (ii) simulated high-energy aquatic environments through an abrasion test, and (iii) incorporation into cement-based mortars. In the natural weathering experiment, after 117 days, the DFMs exhibited photodegradation, resulting in chemical alterations in carbonyl and hydroxyl groups.

View Article and Find Full Text PDF

The evaluation of the mechanical performance of fly ash-recycled mortar (FARM) is a necessary condition to ensure the efficient utilization of recycled fine aggregates. This article describes the design of nine mix proportions of FARMs with a low water/cement ratio and screens six mix proportions with reasonable flowability. The compressive strengths of FARMs were tested, and the influence of the water/cement ratio (/) and age on the compressive strength was analyzed.

View Article and Find Full Text PDF

The Influence of Mineral Additives on Aggregate Reactivity.

Materials (Basel)

December 2024

Faculty of Civil Engineering and Geodesy, Military University of Technology, 2 Gen. Sylwestra Kaliskiego Str., 00-908 Warsaw, Poland.

In this article, the authors present the results of their research on assessing the effect of selected mineral additives on the alkaline reactivity of aggregates. The main objective of this research was to check whether the reactivity of aggregates that do not meet the standard requirements can be reduced. Due to the decreasing availability of crushed aggregates and the decreasing resources of sand used for cement concrete road surfaces, solutions should be sought that allow the use of lower-grade aggregates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!