Simulation of Wire Arc Additive Manufacturing in the Reinforcement of a Half-Cylinder Shell Geometry.

Materials (Basel)

Institute for Machine Tools and Industrial Management (iwb), TUM School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany.

Published: June 2023

Wire arc additive manufacturing (WAAM) is an additive manufacturing process based on gas metal arc welding. It allows the fabrication of large-volume metal components by the controlled deposition and stacking of weld beads. Next to the near-net-shape manufacturing of metal components, WAAM is also applied in the local reinforcement of structural parts, such as shell geometries. However, this procedure can lead to undesired thermally induced distortions. In this work, the distortion caused by the WAAM reinforcement of half-cylinder shell geometries was investigated through experiments and transient thermo-mechanical finite element simulations. In the experiments, the weld beads were applied to the specimen, while its thermal history was measured using thermocouples. The developing distortions were registered using displacement transducers. The experimental data were used to calibrate and validate the simulation. Using the validated model, the temperature field and the distortions of the specimens could be predicted. Subsequently, the simulation was used to assess different deposition patterns and shell thicknesses with regard to the resulting part distortions. The investigations revealed a non-linear relation between shell thickness and distortion. Moreover, the orientation and the sequence of the weld beads had a significant impact on the formation of distortion. However, those effects diminished with an increasing shell thickness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342883PMC
http://dx.doi.org/10.3390/ma16134568DOI Listing

Publication Analysis

Top Keywords

additive manufacturing
12
weld beads
12
wire arc
8
arc additive
8
reinforcement half-cylinder
8
half-cylinder shell
8
metal components
8
shell geometries
8
shell thickness
8
shell
6

Similar Publications

[Pain around the first ray of the hand: differential diagnoses and treatment].

Orthopadie (Heidelb)

January 2025

Klinik für Handchirurgie und Orthopädie, Spital Langenthal, Spital Region Oberaargau SRO AG, Langenthal, Schweiz.

Pain around the first ray of the hand, particularly in the thumb area, is a frequent clinical problem that can have various causes. This article explores the most important differential diagnoses, including thumb carpometacarpal (CMC-I) osteoarthritis (rhizarthrosis), de Quervain's stenosing tenosynovitis, carpal tunnel syndrome and Wartenberg's syndrome. A detailed medical history, targeted clinical examination and if necessary the use of modern imaging techniques are crucial for making the diagnosis.

View Article and Find Full Text PDF

Hybrid additive manufacturing for Zn-Mg casting for biomedical application.

In Vitro Model

December 2024

Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA.

Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid.

View Article and Find Full Text PDF

Facile Access to Highly Efficient 3D Printing Using Robust Self-Healing CDs/Polymer Hybrids.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China.

3D printing efficiency, as a key indicator of additive manufacturing technology, directly affects its competitiveness in rapid prototyping, small batch production, and even large-scale industrial applications. Compared with traditional manufacturing methods, the high efficiency of 3D printing is often considered a bottleneck, hindering its application across various fields. Herein, a versatile and efficient strategy is proposed, namely, the dimensional reduction printing (DRP) process, to break the obstacle of high efficiency of 3D printing.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to analyze gingival fibroblast proliferation on additively manufactured polymethylmethacrylate (PMMA) groups with different surface characteristics namely no treatment group (NTG) and customized 250 µm diameter porosity (AM-250G) group.

Materials And Methods: 3D-printed NTG was compared for its influence on growth of cells to a additively manufactured surface with porosity (AM-250G). For each group (NTG, AM-250G) 20 samples of material were tested.

View Article and Find Full Text PDF

Progression of photoresin-based microneedles: From established drug delivery to emerging biosensing technologies.

Biosens Bioelectron

January 2025

Department of Electrical Engineering (ESAT-MNS), Catholic University of Leuven (KU Leuven), 3001, Leuven, Belgium; KU Leuven, Department of Physics and Astronomy (HF), Celestij€nenlaan 300D, 3001, Leuven, Belgium; Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnology, Arnesano, Italy.

Microneedles have emerged as a highly promising technology for advancing chemical biosensing and drug delivery applications, offering a minimally invasive, efficient, and versatile approach to healthcare innovation. This review provides a comprehensive analysis of photoresin-based microneedles, with a particular focus on SU-8 photoresin due to its favorable mechanical properties, biocompatibility, and ease of fabrication. Advanced techniques for surface modification are discussed to enhance the functionality of microneedles, enabling their application in precise biochemical diagnostics and effective drug therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!