Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The main objective of the presented research was to find a model that describes the maximum compressive force of paper in its plane. The research began with crushing tests of a number of packaging paper samples of various lengths. It was shown that due to the specific structure of the paper and the high heterogeneity of its structure, packaging paper is material where it is difficult to determine the maximum compressive stress. Next, three analytical models describing the load capacity of a flat paper web were investigated and an alternative empirical model was proposed. The results of the performed tests are directly applicable in the calculation of the mechanical properties of corrugated cardboard and the determination of the load capacity of cardboard packaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342472 | PMC |
http://dx.doi.org/10.3390/ma16134544 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!