Short-wavelength infrared photodetectors based on metamorphic InGaAs grown on GaSb substrates and InP substrates are demonstrated. The devices have a pBn structure that employs an AlGaAsSb thin layer as the electron barrier to suppress dark current density. The strain effect on the electrical performance of the devices was specifically studied through the growth of the pBn structure on different substrates, e.g., InP and GaSb, via a specific buffering technique to optimize material properties and minimize dark current. A lower device dark current density, down to 1 × 10 A/cm at room temperature (295 K), was achieved for the devices grown on the GaSb substrate compared to that of the devices on the InP substrate (8.6 × 10 A/cm). The improved properties of the high-In component InGaAs layer and the AlGaAsSb electron barrier give rise to the low dark current of the photodetector device.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342451 | PMC |
http://dx.doi.org/10.3390/ma16134538 | DOI Listing |
Nanomaterials (Basel)
January 2025
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.
The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band.
View Article and Find Full Text PDFNano Lett
January 2025
School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China.
The high responsivity and broad spectral sensitivity of organic photodetectors (OPDs) present a bright future of commercialization. However, the relatively high dark current density still limits its development. Herein, two novel nonpolar p-type conjugated small molecules, NSN and NSSN, are synthesized as interface layers to enhance the performance of the OPDs, which not only can tune energy alignments and increase the reverse charge injection barrier but also can reduce the interfacial trap density.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
Photodetectors based on lead halide perovskites often show excellent performance but poor stability. Herein, we demonstrate a photodetector based on MAPbBr single crystals passivated with an ultrathin layer of PbSO, which shows superior detectivity and on/off ratios compared to the control device due to the combined effect of lower surface traps, reduced recombination and low dark current. In addition, the device retained ∼56% of its initial * with an impressive on/off ratio of ∼801 after one year compared to ∼22% of * and an on/off ratio of ∼6 of the control device.
View Article and Find Full Text PDFPorcine Health Manag
January 2025
Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
Background: Digestive disorders are one of the main health problems in suckling piglets. The correct visual identification of feces in suckling piglets is an important tool for the diagnosis of enteric diseases. The aim of the present observational study was to analyze different physicochemical parameters of the feces of suckling piglets aged 0 to 21 days: visual appearance (color and consistency), fecal dry matter (FDM) content and pH.
View Article and Find Full Text PDFBehav Brain Res
January 2025
Division of Biotechnology, School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, India.
Whilst the world sees the tremendous growth of mobile phone technology, radiofrequency electromagnetic radiation (RF-EMR) induced possible health effects have emerged as a topic of recent day debate. The current study is designed to test the hypothesis that chronic 900MHz radiation exposure would potentially dysregulate the stress response system (HPA axis) in vivo, via, its non-thermal mechanisms, leading to alterations in the microarchitecture of the adrenal gland, vulnerable brain regions such as the hippocampus which may results in altered behaviours in rats. Male albino Wistar rats aged four weeks, weighing 50-60g were subjected to 900MHz radiation from a cellphone for four weeks at a rate of one hour per day.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!