Immunotherapies against high-risk neuroblastoma (NB), using the anti-GD2 antibody (Ab) dinutuximab beta (DB), significantly improved patient survival. Ab-dependent cellular cytotoxicity (ADCC) is one of the main mechanisms of action and it is primarily mediated by NK cells. To further improve antitumor efficacy, we investigated here a combinatorial immunotherapy with DB and the double immune checkpoint blockade of T-cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) and programmed cell death ligand-1 (PD-L1). The effects of ADCC, mediated by DB against NB cells on NK-cell activity, and the expression of TIGIT and CD226 and their ligands CD112 and CD155, as well as of PD-1 and PD-L1 on NB and effector cells, were investigated using flow cytometry. ADCC was assessed with a calcein-AM-based cytotoxicity assay. The efficacy of a combinatorial immunotherapy with DB, given as a long-term treatment, and the double immune checkpoint blockade of TIGIT and PD-L1 was shown using a resistant murine model of NB, followed by an analysis of the tumor tissue. We detected both TIGIT ligands, CD112 and CD155, on all NB cell lines analyzed. Although ADCC by DB resulted in a strong activation of NK cells leading to an effective tumor cell lysis, a remarkable induction of PD-L1 expression on NB cells, and of TIGIT and PD-1 on effector cells, especially on NK cells, was observed. Additional anti-TIGIT or anti-PD-L1 treatments effectively inhibited tumor growth and improved survival of the mice treated with DB. The superior antitumor effects were observed in the "DB + double immune checkpoint blockade" group, showing an almost complete eradication of the tumors and the highest OS, even under resistant conditions. An analysis of tumor tissue revealed both TIGIT and TIGIT ligand expression on myeloid-derived suppressor cells (MDSCs), suggesting additional mechanisms of protumoral effects in NB. Our data show that the targeting of TIGIT and PD-L1 significantly improves the antitumor efficacy of anti-GD2 immunotherapy, with DB presenting a new effective combinatorial treatment strategy against high-risk tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340720PMC
http://dx.doi.org/10.3390/cancers15133317DOI Listing

Publication Analysis

Top Keywords

tigit pd-l1
12
double immune
12
immune checkpoint
12
tigit
9
blockade tigit
8
dinutuximab beta
8
cells
8
mediated cells
8
antitumor efficacy
8
combinatorial immunotherapy
8

Similar Publications

The Role of YY1 in the Regulation of LAG-3 Expression in CD8 T Cells and Immune Evasion in Cancer: Therapeutic Implications.

Cancers (Basel)

December 2024

Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.

The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive to immune therapeutics. Such treatments resulted in significant clinical responses and the prolongation of survival in a subset of patients.

View Article and Find Full Text PDF

Unleashing the Power of immune Checkpoints: A new strategy for enhancing Treg cells depletion to boost antitumor immunity.

Int Immunopharmacol

January 2025

Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China; Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China. Electronic address:

Article Synopsis
  • Regulatory T (Treg) cells are a type of immunosuppressive CD4 T cells that can hinder anti-tumor immune responses, creating challenges in cancer treatment.
  • Various immune checkpoints (like PD-1/PD-L1, CTLA-4) play critical roles in managing Treg cell activity and proliferation in tumors, impacting overall tumor immunity.
  • Targeting these checkpoints and combining therapies, such as immune checkpoint blockade and CCR8-targeted treatments, may enhance anti-tumor immunity and improve results for cancer patients.
View Article and Find Full Text PDF

Introduction: The COVID-19 pandemic has become a global health crisis, eliciting varying severity in infected individuals. This study aimed to explore the immune profiles between moderate and severe COVID-19 patients experiencing a cytokine storm and their association with mortality. This study highlights the role of PD-1/PD-L1 and the TIGIT/CD226/CD155/CD112 pathways in COVID-19 patients.

View Article and Find Full Text PDF

Background: Due to malnutrition and tumor cachexia, body composition (BC) is frequently altered and known to adversely affect short- and long-term results in patients with cholangiocarcinoma (CCA). Here, we explored immune cell populations in the tumor and liver of CCA patients with respect to BC.

Methods: A cohort of 96 patients who underwent surgery for CCA was investigated by multiplexed immunofluorescence (MIF) techniques with computer-based analysis on whole-tissue slide scans to quantify and characterize immune cells in normal liver and tumor regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!